Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Jantzen sum formula for cyclotomic $q$-Schur algebras


Authors: Gordon James and Andrew Mathas
Journal: Trans. Amer. Math. Soc. 352 (2000), 5381-5404
MSC (2000): Primary 16G99; Secondary 20C20, 20G05
DOI: https://doi.org/10.1090/S0002-9947-00-02492-2
Published electronically: June 14, 2000
MathSciNet review: 1665333
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

The cyclotomic $q$-Schur algebra was introduced by Dipper, James and Mathas, in order to provide a new tool for studying the Ariki-Koike algebra. We here prove an analogue of Jantzen's sum formula for the cyclotomic $q$-Schur algebra. Among the applications is a criterion for certain Specht modules of the Ariki-Koike algebras to be irreducible.


References [Enhancements On Off] (What's this?)

  • 1. H. Andersen, P. Polo, and K. Wen, Representations of quantum algebras, Invent. Math., 104 (1991), 1-59. MR 92e:17011; MR 96c:17016
  • 2. S. Ariki, On the semi-simplicity of the Hecke algebra of $(\mathbb Z/r\mathbb Z)\wr\mathfrak S_n$, J. Algebra, 169 (1994), 216-225. MR 95h:16020
  • 3. S. Ariki and K. Koike, A Hecke algebra of $({\mathbb Z}/r{\mathbb Z})\wr{\mathfrak S}_n$ and construction of its irreducible representations, Adv. Math, 106 (1994), 216-243. MR 95h:20006
  • 4. R. Dipper and G. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3), 54 (1987), 57-82. MR 88m:20084
  • 5. -, The $q$-Schur algebra, Proc. London Math. Soc. (3), 59 (1989), 23-50. MR 90g:16026
  • 6. R. Dipper, G. James, and A. Mathas, Cyclotomic $q$-Schur algebras, Math. Z., 229 (1998), 385-416. CMP 99:05
  • 7. R. Dipper, G. James, and E. Murphy, Gram determinants of type $B_n$, J. Algebra, 189 (1997), 481-505. MR 98a:20010
  • 8. J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math., 123 (1996), 1-34. MR 97h:20016
  • 9. J. A. Green, Polynomial representations of $GL_n$, Lecture Notes in Math., 830, Springer-Verlag, New York, 1980. MR 83j:20003
  • 10. G. D. James, The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer-Verlag, New York, 1978. MR 80g:20019
  • 11. G. D. James and A. Kerber, The representation theory of the symmetric group, 16, Encyclopedia of Mathematics, Addison-Wesley, Massachusetts, 1981. MR 83k:20003
  • 12. G. D. James and A. Mathas, The irreducible Specht modules in characteristic $2$, Bull. London Math. Soc. 31 (1999), 457-462. CMP 99:13
  • 13. -, A $q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3), 74 (1997), 241-274. MR 97j:20013
  • 14. J. C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie Algebren, Math. Ann., 226 (1977), 53-65. MR 55:12783
  • 15. A. Mathas, Hecke algebras and Schur algebras of the symmetric group, Univ. Lecture Notes, 15, A.M.S., Providence, R.I., 1999.
  • 16. G. E. Murphy, A new construction of Young's semi-normal representation of the symmetric groups, J. Algebra, 69 (1981), 287-297. MR 82h:20014
  • 17. -, On the representation theory of the symmetric groups and associated Hecke algebras, J. Algebra, 152 (1992), 492-513. MR 94c:17031

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16G99, 20C20, 20G05

Retrieve articles in all journals with MSC (2000): 16G99, 20C20, 20G05


Additional Information

Gordon James
Affiliation: Department of Mathematics, Imperial College, Queen’s Gate, London SW7 2BZ, United Kingdom
Email: g.james@ic.ac.uk

Andrew Mathas
Affiliation: School of Mathematics, University of Sydney, Sydney NSW 2006, Australia
Email: a.mathas@maths.usyd.edu.au

DOI: https://doi.org/10.1090/S0002-9947-00-02492-2
Received by editor(s): March 18, 1998
Received by editor(s) in revised form: December 1, 1998
Published electronically: June 14, 2000
Additional Notes: The authors would like to thank the Isaac Newton Institute for its hospitality. The second author also gratefully acknowledges the support of the Sonderforschungsbereich 343 at the Universität Bielefeld.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society