Spectra of BP-linear relations, -series,

and BP cohomology of Eilenberg-Mac Lane spaces

Author:
Hirotaka Tamanoi

Journal:
Trans. Amer. Math. Soc. **352** (2000), 5139-5178

MSC (1991):
Primary 55N10, 55N20

DOI:
https://doi.org/10.1090/S0002-9947-99-02484-8

Published electronically:
July 26, 1999

MathSciNet review:
1661270

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: On Brown-Peterson cohomology groups of a space, we introduce a natural inherent topology, BP topology, which is always complete Hausdorff for any space. We then construct a spectra map which calculates infinite BP-linear sums convergent with respect to the BP topology, and a spectrum which describes infinite sum BP-linear relations in BP cohomology. The mod cohomology of this spectrum is a cyclic module over the Steenrod algebra with relations generated by products of exactly two Milnor primitives. We show a close relationship between BP-linear relations in BP cohomology and the action of the Milnor primitives on mod cohomology. We prove main relations in the BP cohomology of Eilenberg-Mac Lane spaces. These are infinite sum BP-linear relations convergent with respect to the BP topology. Using BP fundamental classes, we define -series which are -analogues of the -series. Finally, we show that the above main relations come from the -series.

**[Ad]**J. F. Adams,*Stable homotopy and generalized homology*, University of Chicago Press, Chicago, Illinois, 1974. MR**53:6534****[Ar]**S. Araki,*Typical formal groups in complex cobordism and K-theory*, Lecture Notes Math., Kyoto Univ., vol. 6, Kinokuniya Book Store, 1973. MR**51:11549****[Ba]**N. A. Baas,*On bordism theory of manifolds with singularity*, Math. Scand.**33**(1973), 279-302. MR**49:11547b****[BM]**N. A. Baas and Ib Madsen,*On the realization of certain modules over the Steenrod algebra*, Math. Scand.**31**(1971), 220-224. MR**51:14048****[H]**M. Hazewinkel,*Formal groups and applications*, Academic Press, New York, 1978. MR**82a:14020****[JW1]**D. C. Johnson and W. S. Wilson,*Projective dimension and Brown-Peterson homology*, Topology**12**(1973), 327-353. MR**48:12576****[JW2]**D. C. Johnson and W. S. Wilson,*BP operations and Morava's extraordinary K-theories*, Math. Z.**144**(1975), 55-75. MR**51:14025****[JW3]**D. C. Johnson and W. S. Wilson,*The projective dimension of the complex cobordism of Eilenberg-MacLane spaces*, Osaka J. Math.**14**(1977), 533-536. MR**57:7584****[JW4]**D. C. Johnson and W. S. Wilson,*The Brown-Peterson homology of elementary -groups*, Amer. J. Math.**107**(1985), 427-453. MR**86j:55008****[JY]**D. C. Johnson and Z. Yoshimura,*Torsion in Brown-Peterson homology and Hurewicz homomorphisms*, Osaka J. Math.**17**(1980), 117-136. MR**81b:55010****[L]**P. S. Landweber,*Coherence, flatness and cobordism of classifying spaces*, Proceedings of Advanced Study Institute on Algebraic Topology, Aarhus, 1970, pp. 256-269. MR**42:6845****[M1]**J. W. Milnor,*The Steenrod algebra and its dual*, Ann. of Math.**67**(1958), 150-171. MR**20:6092****[M2]**J. W. Milnor,*On the cobordism ring and a complex analogue*, Amer. J. Math.**82**(1960), 505-521. MR**22:9975****[M3]**J. W. Milnor,*On axiomatic homology theory*, Pacific J. Math.**12**(1962), 337-341. MR**28:2544****[Mo]**J. Morava,*A product for the odd-primary bordism of manifolds with singularities*, Topology**18**(1979), 177-186. MR**80k:57063****[Q]**D. Quillen,*On the formal group laws of unoriented and complex cobordism theory*, Bull. Amer. Math. Soc.**75**(1969), 1293-1298. MR**40:6565****[R1]**D. C. Ravenel,*Complex cobordism and stable homotopy groups of spheres*, Academic Press, Orlando, FL, 1986. MR**87j:55003****[R2]**D. C. Ravenel,*Nilpotence and Periodicity in Stable Homotopy Theory*, Annals of Math. Studies 128, Princeton Univ. Press, Princeton, NJ, 1992. MR**94b:55015****[RW1]**D. C. Ravenel and W. S. Wilson,*The Hopf ring for complex cobordism*, J. Pure Appl. Algebra**9**(1977), 241-280. MR**56:6644****[RW2]**D. C. Ravenel and W. S. Wilson,*The Morava K theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture*, Amer. J. Math.**102**(1980), 691-748. MR**81i:55005****[RWY]**D. C. Ravenel, W. S. Wilson, and N. Yagita,*Brown-Peterson cohomology from Morava -theory*, -theory**15**(1998), 147-199. CMP**99:02****[S]**K. Sinkinson,*The cohomology of certain spectra associated with th Brown-Peterson spectrum*, Duke Math. J.**43**(1976), 605-622. MR**53:14471****[T1]**H. Tamanoi,*The image of the BP Thom map for Eilenberg-Mac Lane spaces*, Trans. AMS**349**(1997), 1209-1237. MR**97i:55012****[T2]**H. Tamanoi,*-subalgebras, Milnor basis, and cohomology of Eilenberg-Mac Lane spaces*, To appear in J. Pure and Applied Algebra.**[W]**W. S. Wilson,*The -spectrum for Brown-Peterson cohomology*, Part I, Comment. Math. Helv.**48**(1973), 45-55;*Part II*, Amer. J. Math.**97**(1975), 101-123.MR**48:5055**; MR**52:4271****[Y1]**N. Yagita,*On relations between Brown-Peterson cohomology and the ordinary mod cohomology theory*, Kodai Math. J.**7**(1984), 273-285. MR**85g:55007****[Y2]**N. Yagita,*On the image*, Advanced Studies in Pure Math.**9**(1986, Homotopy Theory and Related Topics), 335-344. MR**88j:55005****[Z]**R. Zahler,*The Adams-Novikov spectral sequence for the spheres*, Ann. of Math.**96**(1972), 480-504. MR**47:7742**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
55N10,
55N20

Retrieve articles in all journals with MSC (1991): 55N10, 55N20

Additional Information

**Hirotaka Tamanoi**

Affiliation:
Department of Mathematics, University of California at Santa Cruz, Santa Cruz, California 95064

Email:
tamanoi@math.ucsc.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02484-8

Keywords:
Brown-Peterson (co)homology theory,
BP fundamental class,
BP topology,
Eilenberg--Mac Lane spaces,
Milnor primitives,
$\Omega $-spectrum,
Steenrod algebra,
Sullivan exact sequence,
$v_{n}$-series

Received by editor(s):
April 30, 1998

Published electronically:
July 26, 1999

Additional Notes:
This research was partially supported by a Faculty Research Grant, University of California at Santa Cruz

Article copyright:
© Copyright 1999
American Mathematical Society