Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents


Authors: N. Ghoussoub and C. Yuan
Journal: Trans. Amer. Math. Soc. 352 (2000), 5703-5743
MSC (2000): Primary 35J20, 35J70, 47J30, 58E30
DOI: https://doi.org/10.1090/S0002-9947-00-02560-5
Published electronically: July 6, 2000
MathSciNet review: 1695021
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We use variational methods to study the existence and multiplicity of solutions for the following quasi-linear partial differential equation:

$\left\{ \begin{matrix} {-\triangle_{p} u = \lambda \vert u\vert^{r-2}u + \mu ... ... }, {}} \ {\hphantom{-} u\vert _{\partial \Omega} = 0, } \end{matrix}\right.$

where $\lambda$ and $\mu$ are two positive parameters and $\Omega$ is a smooth bounded domain in $\mathbf{R}^n$ containing $0$ in its interior. The variational approach requires that $1 < p < n$, $p\leq q\leq p^{*}(s)\equiv \frac{n-s}{n-p}p$ and $p\leq r\leq p^*\equiv p^*(0)=\frac{np}{n-p}$, which we assume throughout. However, the situations differ widely with $q$ and $r$, and the interesting cases occur either at the critical Sobolev exponent ($r=p^*$) or in the Hardy-critical setting ($s=p=q$) or in the more general Hardy-Sobolev setting when $q=\frac{n-s}{n-p}p$. In these cases some compactness can be restored by establishing Palais-Smale type conditions around appropriately chosen dual sets. Many of the results are new even in the case $p=2$, especially those corresponding to singularities (i.e., when $0<s\leq p)$.


References [Enhancements On Off] (What's this?)

  • 1. T. Aubin: Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Springer-Verlag, 1982. MR 85j:58002
  • 2. G. Bliss: An Integral Inequality, J. London Math. Soc., 5 (1930) 40-46.
  • 3. L. Boccardo and F. Murat: Almost Everywhere Convergence of the Gradients of Solutions to Elliptic and Parabolic Equations, Nonlinear Analysis, TMA 19, (1992) 581-597. MR 93h:35061
  • 4. H. Brezis, E. Lieb: A Relation Between Point Convergence of Functions and Convergence of Functionals, Proc. Amer. Math. Soc. 88(1983), 486-490. MR 84c:28003
  • 5. H. Brezis and L. Nirenberg: Positive Solutions of Nonlinear Elliptic Equations involving Critical Exponents, Communications on Pure and Applied Mathematics, 34 (1983), 437-477. MR 84h:35059
  • 6. H. Brezis and L. Nirenberg: A Minimization Problem with Critical Exponent and Non-zero Data, in "Symmetry in Nature", Scuola Norm. Sup. Pisa (1989), 129-140.
  • 7. L. Caffarelli, B. Gidas and J. Spruck: Asymptotic Symmetry and Local Behavior of Semi-linear Elliptic Equations with Critical Sobolev Growth, Comm. Pure Appl. Math. 42 (1989) 271-477. MR 90c:35075
  • 8. L. Caffarelli, R. Kohn and L. Nirenberg: First Order Interpolation Inequality with Weights, Compositio Math. 53 (1984) 259-275. MR 86c:46028
  • 9. G. Cerami, S. Solimini, and M. Struwe: Some Existence Results for Super-linear Elliptic Boundary Value Problems Involving Critical Exponents, J. Functional Analysis 69, 9 (1986) 289-306. MR 88b:35074
  • 10. K. S. Chou and C. W. Chu: On the Best Constant for a Weighted Sobolev-Hardy Inequality, J. London Math. Soc. (2) 48 (1993) 137-151. MR 94h:46052
  • 11. P. Drabek: Strongly Nonlinear Degenerated and Singular Elliptic Problems, Pitman Research Notes in Mathematics Series 343 (1996) 112-146. MR 97k:35091
  • 12. P. Drabek and S. I. Pohozaev: Positive Solutions for the p-Laplacian: Application of the Fibering Method, Proceeding of the Royal Society of Edinburgh, 127A (1997) 703-726. MR 98h:35061
  • 13. J. P. Garcia Azorero and I. Peral Alonso: Hardy Inequalities and Some Critical Elliptic and Parabolic Problems, J. of Differential Equations 144 (1998) 441-476. MR 99f:35099
  • 14. J. Garcia Azorero and I. Peral Alonso: Multiplicity of Solutions for Elliptic Problems with Critical Exponent or with a Non-symmetric Term, Trans. Amer. Math. Soc. 323 (1991), 877-895. MR 99g:35108
  • 15. J. Garcia Azorero and I. Peral Alonso: Some Results about the Existence of a Second Positive Solution in a Quasi-linear Critical Problem, Indiana University Math. Journal 43 (1994), 941-957. MR 95i:35093
  • 16. J. Garcia Azorero and I. Peral Alonso: Existence and Non-uniqueness for the p-Laplacian: Nonlinear Eigenvalues. Commun. in PDE, 12 (1987), 1389-1430. MR 89e:35058
  • 17. N. Ghoussoub: Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press (1993). MR 95a:58021
  • 18. D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1983). MR 86c:35035
  • 19. M. Guedda, L. Veron: Local and Global Properties of Solutions of Quasi-linear Elliptic Equations, Journal of Differential Equations 76 (1988) 159-189. MR 89k:35078
  • 20. M. Guedda, L. Veron: Quasi-linear Elliptic Equations Involving Critical Sobolev Exponents, Nonlinear Anal TMA, 13 (8) (1989) 879-902. MR 90h:35100
  • 21. E. H. Lieb: Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities, Ann. of Math. 118 (1983) 349-374. MR 86i:42010
  • 22. E. H. Lieb and M. Loss: Analysis, Graduate Studies in Mathematics Vol. 14 Amer. Math. Soc., Providence, RI, (1997). MR 98b:00004
  • 23. M. Otani: Existence and Nonexistence of Nontrivial Solutions of Some Nonlinear Degenerated Elliptic Equations, Journal of Functional Analysis 76 (1988) 140-159. MR 89c:35067
  • 24. E. S. Noussair, C. A. Swanson, J. Yang: Quasi-linear Elliptic Problems with Critical Exponents, Nonlin. Anal. 20 (1993) 285-301. MR 94b:35106
  • 25. I. Peral: Multiplicity of Solutions for the p-Laplacian, Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations at ICTP of Trieste (April 21 - May 9, 1997).
  • 26. M. Struwe: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Second Edition, Springer-Verlag (1996). MR 98f:49002
  • 27. G. Talenti: Best Constant in Sobolev Inequalities, Ann. Math. Pura Appl. 110 (1976), 353-372. MR 57:3846
  • 28. G. Tarantello: Nodal Solutions of Semi-linear Elliptic Equations with Critical Exponent, Differential and Integral Equations, 5 (1992) 25-42. MR 92k:35109
  • 29. P. Tolksdorf: Regularity for a More General Class of Quasi-linear Elliptic Equations, Journal of Differential Equations 51 (1984) 126-150. MR 85g:35047
  • 30. J. Yang: Positive Solutions of Quasi-linear Elliptic Obstacle Problems with Critical Exponents, Nonlinear Analysis, TMA 25 (1995) 1283-1306. MR 96m:35120
  • 31. C. Yuan: On Non-homogeneous Quasi-linear PDEs Involving the p-Laplacian and the Critical Sobolev Exponent, Ph.D. Dissertation, UBC 1998.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J20, 35J70, 47J30, 58E30

Retrieve articles in all journals with MSC (2000): 35J20, 35J70, 47J30, 58E30


Additional Information

N. Ghoussoub
Affiliation: Department of Mathematics, The University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada

C. Yuan
Affiliation: Department of Mathematics, The University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada

DOI: https://doi.org/10.1090/S0002-9947-00-02560-5
Received by editor(s): August 11, 1998
Published electronically: July 6, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society