Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Intersection theory on non-commutative surfaces


Author: Peter Jørgensen
Journal: Trans. Amer. Math. Soc. 352 (2000), 5817-5854
MSC (2000): Primary 14A22, 16W50
DOI: https://doi.org/10.1090/S0002-9947-00-02565-4
Published electronically: June 21, 2000
MathSciNet review: 1695026
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a non-commutative algebraic surface, $X$, and an effective divisor $Y$ on $X$, as defined by Van den Bergh. We show that the Riemann-Roch theorem, the genus formula, and the self intersection formula from classical algebraic geometry generalize to this setting.

We also apply our theory to some special cases, including the blow up of $X$in a point, and show that the self intersection of the exceptional divisor is $-1$. This is used to give an example of a non-commutative surface with a commutative ${\Bbb P}^1$ which cannot be blown down, because its self intersection is $+1$ rather than $-1$. We also get some results on Hilbert polynomials of modules on $X$.


References [Enhancements On Off] (What's this?)

  • 1. M. Artin, J. Tate, and M. Van den Bergh, Some algebras related to automorphisms of elliptic curves, in ``The Grothendieck Festschrift'', vol. I, pp. 33-85, Birkhäuser, Boston, 1990. MR 92e:14002
  • 2. M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), 228-287. MR 96a:14004
  • 3. W. Fulton, ``Intersection Theory'', Ergebnisse der Math. und ihrer Grenzgebiete, 3. Folge, Band 2, Springer, Berlin, 1984. MR 85k:14004
  • 4. P. Gabriel, Des catégories abéliennes, Bull. Math. Soc. France 90 (1962), 323-448. MR 38:1144
  • 5. R. Hartshorne, ``Algebraic Geometry'', Grad. Texts in Math. 52, Springer, New York, 1977. MR 57:3116
  • 6. S. Mac Lane, ``Categories for the Working Mathematician'', Grad. Texts in Math. 5, Springer, New York, 1971. MR 50:7275
  • 7. I. Mori and S. P. Smith, Bézout's theorem for quantum ${\Bbb P}^2$, preprint, 1997.
  • 8. I. Mori and S. P. Smith, The Grothendieck group of a quantum projective space bundle, preprint, 1998.
  • 9. S. P. Smith and J. J. Zhang, Curves on quasi-schemes, Algebras and Represent. Theory 1 (1998), 311-351. CMP 99:11
  • 10. M. Van den Bergh, Blowing up of non-commutative smooth surfaces, to appear in Mem. Amer. Math. Soc.
  • 11. M. Van Gastel and M. Van den Bergh, Graded Modules of Gelfand-Kirillov Dimension One over Three-Dimensional Artin-Schelter Regular Algebras, J. Algebra 196 (1997), 251-282. MR 99c:16020
  • 12. A. Yekutieli and J. J. Zhang, Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc. 125 (1997), 697-707. MR 97e:14003

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14A22, 16W50

Retrieve articles in all journals with MSC (2000): 14A22, 16W50


Additional Information

Peter Jørgensen
Affiliation: Matematisk Afdeling, Københavns Universitet, Universitetsparken 5, 2100 København Ø, DK-Danmark
Email: popjoerg@math.ku.dk

DOI: https://doi.org/10.1090/S0002-9947-00-02565-4
Keywords: Quasi-scheme, effective divisor, intersection multiplicity, non-commutative surface, non-commutative Riemann-Roch theorem, non-commutative blow up
Received by editor(s): June 16, 1998
Received by editor(s) in revised form: March 31, 1999
Published electronically: June 21, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society