Connectivity at infinity for right angled Artin groups

Authors:
Noel Brady and John Meier

Journal:
Trans. Amer. Math. Soc. **353** (2001), 117-132

MSC (2000):
Primary 20F36, 57M07

Published electronically:
August 21, 2000

MathSciNet review:
1675166

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish sufficient conditions implying semistability and connectivity at infinity properties for CAT(0) cubical complexes. We use this, along with the geometry of cubical 's to give a complete description of the higher connectivity at infinity properties of right angled Artin groups. Among other things, this determines which right angled Artin groups are duality groups. Applications to group extensions are also included.

**[B]**Mladen Bestvina,*Non-positively curved aspects of Artin groups of finite type*, Geom. Topol.**3**(1999), 269–302 (electronic). MR**1714913**, 10.2140/gt.1999.3.269**[BB]**Mladen Bestvina and Noel Brady,*Morse theory and finiteness properties of groups*, Invent. Math.**129**(1997), no. 3, 445–470. MR**1465330**, 10.1007/s002220050168**[BF]**M. Bestvina and M. Feighn,*The topology at infinity of Out*, Invent. Math.**140**(2000), 651-692.**[BH]**M. Bridson and A. Haefliger,*Metric spaces of non-positive curvature*, manuscript of a book, in progress.**[BT]**Matthew G. Brin and T. L. Thickstun,*3-manifolds which are end 1-movable*, Mem. Amer. Math. Soc.**81**(1989), no. 411, viii+73. MR**992161**, 10.1090/memo/0411**[Br]**Kenneth S. Brown,*Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR**672956****[BM]**K.S. Brown and J. Meier,*Improper actions and higher connectivity at infinity*, Comment. Math. Helv.**75**(2000), 171-188. CMP**2000:13****[Da 1]**Michael W. Davis,*Groups generated by reflections and aspherical manifolds not covered by Euclidean space*, Ann. of Math. (2)**117**(1983), no. 2, 293–324. MR**690848**, 10.2307/2007079**[Da 2]**Michael W. Davis,*The cohomology of a Coxeter group with group ring coefficients*, Duke Math. J.**91**(1998), no. 2, 297–314. MR**1600586**, 10.1215/S0012-7094-98-09113-X**[G]**R. Geoghegan,*Topological Methods in Group Theory*, manuscript of a book, in progress.**[GM 1]**Ross Geoghegan and Michael L. Mihalik,*Free abelian cohomology of groups and ends of universal covers*, J. Pure Appl. Algebra**36**(1985), no. 2, 123–137. MR**787167**, 10.1016/0022-4049(85)90065-9**[GM 2]**Ross Geoghegan and Michael L. Mihalik,*The fundamental group at infinity*, Topology**35**(1996), no. 3, 655–669. MR**1396771**, 10.1016/0040-9383(95)00033-X**[H]**C. H. Houghton,*Cohomology and the behaviour at infinity of finitely presented groups*, J. London Math. Soc. (2)**15**(1977), no. 3, 465–471. MR**0457577****[J]**Brad Jackson,*End invariants of group extensions*, Topology**21**(1982), no. 1, 71–81. MR**630881**, 10.1016/0040-9383(82)90042-8**[MS]**Sibe Mardešić and Jack Segal,*Shape theory*, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR**676973****[Me]**John Meier,*Geometric invariants for Artin groups*, Proc. London Math. Soc. (3)**74**(1997), no. 1, 151–173. MR**1416729**, 10.1112/S0024611597000063**[MMV]**John Meier, Holger Meinert, and Leonard VanWyk,*Higher generation subgroup sets and the Σ-invariants of graph groups*, Comment. Math. Helv.**73**(1998), no. 1, 22–44. MR**1610579**, 10.1007/s000140050044**[MV]**John Meier and Leonard VanWyk,*The Bieri-Neumann-Strebel invariants for graph groups*, Proc. London Math. Soc. (3)**71**(1995), no. 2, 263–280. MR**1337468**, 10.1112/plms/s3-71.2.263**[Mi 1]**Michael L. Mihalik,*Semistability at the end of a group extension*, Trans. Amer. Math. Soc.**277**(1983), no. 1, 307–321. MR**690054**, 10.1090/S0002-9947-1983-0690054-4**[Mi 2]**Michael L. Mihalik,*Semistability of Artin and Coxeter groups*, J. Pure Appl. Algebra**111**(1996), no. 1-3, 205–211. MR**1394352**, 10.1016/0022-4049(95)00117-4**[Mi 3]**Michael L. Mihalik,*Semistability at infinity, simple connectivity at infinity and normal subgroups*, Topology Appl.**72**(1996), no. 3, 273–281. MR**1406313**, 10.1016/0166-8641(96)00029-6**[P]**Joseph S. Profio,*Using subnormality to show the simple connectivity at infinity of a finitely presented group*, Trans. Amer. Math. Soc.**320**(1990), no. 1, 281–292. MR**961627**, 10.1090/S0002-9947-1990-0961627-X**[R]**J. P. Rickert,*A proof of the simple connectivity at infinity of*, J. Pure Appl. Algebra**145**(2000), 59-73. CMP**2000:06****[St]**John R. Stallings,*On torsion-free groups with infinitely many ends*, Ann. of Math. (2)**88**(1968), 312–334. MR**0228573****[Sr]**R. Strebel,*A remark on subgroups of infinite index in Poincaré duality groups*, Comment. Math. Helv.**52**(1977), no. 3, 317–324. MR**0457588****[V]**Karen Vogtmann,*End invariants of the group of outer automorphisms of a free group*, Topology**34**(1995), no. 3, 533–545. MR**1341807**, 10.1016/0040-9383(94)00042-J

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20F36,
57M07

Retrieve articles in all journals with MSC (2000): 20F36, 57M07

Additional Information

**Noel Brady**

Affiliation:
Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019

Email:
nbrady@math.ou.edu

**John Meier**

Affiliation:
Department of Mathematics, Lafayette College, Easton, Pennsylvania 18042

Email:
meierj@lafayette.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02506-X

Keywords:
Topology at infinity,
right angled Artin groups,
cubical complexes

Received by editor(s):
December 4, 1997

Received by editor(s) in revised form:
February 5, 1999

Published electronically:
August 21, 2000

Additional Notes:
The first author thanks the Universitat Frankfurt for support during the summer of 1997 while part of this work was being carried out. He also acknowledges support from NSF grant DMS-9704417. The second author thanks Cornell University for hosting him while on leave from Lafayette College, and the NSF for the support of an RUI grant DMS-9705007

Article copyright:
© Copyright 2000
American Mathematical Society