Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Degree of strata of singular cubic surfaces


Authors: Rafael Hernández and María J. Vázquez-Gallo
Journal: Trans. Amer. Math. Soc. 353 (2001), 95-115
MSC (2000): Primary 14N05, 14C17; Secondary 14C05, 14C15
DOI: https://doi.org/10.1090/S0002-9947-00-02585-X
Published electronically: August 9, 2000
MathSciNet review: 1707194
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We determine the degree of some strata of singular cubic surfaces in the projective space $\mathbf{P}^3$. These strata are subvarieties of the $\mathbf{P}^{19}$ parametrizing all cubic surfaces in $\mathbf{P}^3$. It is known what their dimension is and that they are irreducible. In 1986, D. F. Coray and I. Vainsencher computed the degree of the 4 strata consisting on cubic surfaces with a double line. To work out the case of isolated singularities we relate the problem with (stationary) multiple-point theory.


References [Enhancements On Off] (What's this?)

  • 1. A. B. Altman and S. L. Kleiman, Foundations of the theory of Fano schemes, Compos. Math. 34 (1977), 3-47. MR 58:27967
  • 2. V. I. Arnold, Normal forms of functions near degenerate critical points, the Weyl groups $A_k$, $D_k$and $E_k$ and Lagrangian singularities, Func. Anal. Appl. 6 (1972), 254-272. MR 50:8595
  • 3. V. I. Arnold, Normal forms of functions in the neighborhood of degenerate critical points, Russ. Math. Surv. 29 (2) (1974), 11-49. MR 58:24324
  • 4. J. W. Bruce, A stratification of the space of cubic surfaces, Math. Proc. Cambridge 87 (1980), 427-441. MR 81c:14022
  • 5. J. W. Bruce and C. T. C. Wall, On the clasification of cubic surfaces, J. Lond. Math. Soc. (2) 19 (1979), 245-256. MR 80f:14021
  • 6. A. Cayley, A memoir on cubic surfaces, Phil. Trans. Roy. Soc. 159 (1869), 231-236.
  • 7. S. J. Colley, Enumerating stationary multiple-points, Adv. Math. 66 (1987), 149-170. MR 89g:14042
  • 8. D. F. Coray and I. Vainsencher, Enumerative formulae for ruled cubic surfaces and rational quintic curves, Comment. Math. Helv. 61 (1986), 510-518. MR 87m:14061
  • 9. W. Fulton, Intersection Theory, Springer-Verlag, (1984). MR 85k:14004
  • 10. W. Fulton and D. Laksov, Residual intersections and the double point formula, Real and complex singularities, ed. P. Holm, Sijthoff & Nordhoff, (1977), 171-177. MR 58:27971
  • 11. J. Harris and L. W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology, Vol. 23, No.1 (1984), 71-84. MR 85c:14032
  • 12. R. Hartshorne, Algebraic Geometry, Springer-Verlag, (1977). MR 57:3116
  • 13. S. Iitaka, Algebraic Geometry, Springer Verlag, (1982). MR 84j:14001
  • 14. S. Katz and S. A. Stromme, SCHUBERT: a MAPLE package for intersection theory. Available by anonymous ftp from ftp.math.okstate.edu or linus.mi.uib.no, cd pub/schubert.
  • 15. S. Keel, Intersection theory of moduli space of stable $N$-pointed curves of genus cero, Trans. Amer. Math. Soc. 330 (1992), 545-574. MR 92f:14003
  • 16. S. L. Kleiman, The enumerative theory of singularities, Real and complex singularities, ed. P. Holm, Sijthoff & Nordhoff, (1977), 297-396. MR 58:27960
  • 17. S. L. Kleiman, Multiple-point formulas. I: Iteration, Acta Math. 147 (1981), 13-49. MR 83j:14006
  • 18. S. L. Kleiman, Multiple-point formulas. II: the Hilbert scheme, Enumerative Geometry, (Proc. Conf., Sitges, 1987), ed. S. Xambó Descamps, LNM 1436, Springer-Verlag (1989), 101-138. MR 92a:14062
  • 19. D. Laksov, Secant bundles and Todd's formula for the double points of maps into $\mathbf{P}^n$, Proc. Lond. Math. Soc. 37 (1978), 120-142. MR 80c:14007
  • 20. MAPLE V, Copyright (c), 1981-1990, University of Waterloo.
  • 21. A. Mattuck, Secant bundles on symmetric products, Am. J. Math. 87 (1965), 779-797. MR 33:7345
  • 22. J. M. Miret and S. Xambó Descamps, On the geometry of nodal plane cubics: the condition $p$, Enumerative Geometry: Zeuthen Symposium, ed. S. L. Kleiman y A. Thorup, Contemp. Math. 123, A.M.S. (1991), 169-187. MR 93e:14064
  • 23. J. M. Miret and S. Xambó Descamps, Rational equivalence on some families of plane curves, Ann. I. Fourier, Grenoble, 44, 2 (1994), 323-345. MR 95g:14006
  • 24. Z. Ran, Curvilinear enumerative geometry, Acta Math. 155 (1985), 81-101. MR 86m:14040
  • 25. L. G. Roberts, Lines in singular cubics, Queen's Papers in Pure and Appl. Math.
  • 26. L. Schläfli, On the distribution of surfaces of the third order into species, Phil. Trans. Roy. Soc. 153 (1864), 193-247.
  • 27. R. L. E. Schwarzenberger, The secant bundle of a projective variety, Proc. London. Math. Soc. 14 (1964), 369-384. MR 28:3042
  • 28. I. Vainsencher, The degrees of certain strata of the dual variety, Compos. Math. 38 (1979), 241-252. MR 81g:14024
  • 29. I. Vainsencher, Counting divisors with prescribed singularities, Tran. Amer. Math. Soc., Vol. 267, No. 2, (1981), 399-422. MR 83b:14021
  • 30. María J. Vázquez-Gallo, Grado de variedades de superficies singulares, Ph.D. thesis, University Autonoma of Madrid (1997).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14N05, 14C17, 14C05, 14C15

Retrieve articles in all journals with MSC (2000): 14N05, 14C17, 14C05, 14C15


Additional Information

Rafael Hernández
Affiliation: Departamento de Matematicas, Facultad de Ciencias, Universidad Autonoma de Madrid, Madrid, 28049, Spain
Email: rafael.hernandez@uam.es

María J. Vázquez-Gallo
Affiliation: Departamento de Matematicas, Facultad de Ciencias, Universidad Autonoma de Madrid, Madrid, 28049, Spain
Email: mjesus.vazquez@uam.es

DOI: https://doi.org/10.1090/S0002-9947-00-02585-X
Keywords: Enumerative geometry, strata of singular cubic surfaces, stationary multiple-point theory
Received by editor(s): March 15, 1999
Published electronically: August 9, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society