Hermitian-Einstein metrics for vector bundles on complete Kähler manifolds

Authors:
Lei Ni and Huaiyu Ren

Journal:
Trans. Amer. Math. Soc. **353** (2001), 441-456

MSC (2000):
Primary 58G11

Published electronically:
August 3, 2000

MathSciNet review:
1694377

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermitian-Einstein equations on holomorphic vector bundles over strictly pseudoconvex domains.

**[A-S]**Michael T. Anderson and Richard Schoen,*Positive harmonic functions on complete manifolds of negative curvature*, Ann. of Math. (2)**121**(1985), no. 3, 429–461. MR**794369**, 10.2307/1971181**[A-C-M]**Patricio Aviles, H. Choi, and Mario Micallef,*Boundary behavior of harmonic maps on nonsmooth domains and complete negatively curved manifolds*, J. Funct. Anal.**99**(1991), no. 2, 293–331. MR**1121616**, 10.1016/0022-1236(91)90043-5**[B]**Shigetoshi Bando,*Einstein-Hermitian metrics on noncompact Kähler manifolds*, Einstein metrics and Yang-Mills connections (Sanda, 1990) Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 27–33. MR**1215276****[B-S]**Shigetoshi Bando and Yum-Tong Siu,*Stable sheaves and Einstein-Hermitian metrics*, Geometry and analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 39–50. MR**1463962****[C-Y]**Shiu Yuen Cheng and Shing Tung Yau,*On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation*, Comm. Pure Appl. Math.**33**(1980), no. 4, 507–544. MR**575736**, 10.1002/cpa.3160330404**[D1]**S. K. Donaldson,*Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles*, Proc. London Math. Soc. (3)**50**(1985), no. 1, 1–26. MR**765366**, 10.1112/plms/s3-50.1.1**[D2]**S. K. Donaldson,*Boundary value problems for Yang-Mills fields*, J. Geom. Phys.**8**(1992), no. 1-4, 89–122. MR**1165874**, 10.1016/0393-0440(92)90044-2**[D3]**S. K. Donaldson,*Infinite determinants, stable bundles and curvature*, Duke Math. J.**54**(1987), no. 1, 231–247. MR**885784**, 10.1215/S0012-7094-87-05414-7**[Do]**Harold Donnelly,*𝐿₂ cohomology of pseudoconvex domains with complete Kähler metric*, Michigan Math. J.**41**(1994), no. 3, 433–442. MR**1297700**, 10.1307/mmj/1029005071**[G-H]**Phillip Griffiths and Joseph Harris,*Principles of algebraic geometry*, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR**507725****[G-T]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[Gri]**José M. Figueroa-O’Farrill,*Obstructions to gauging WZ terms: a symplectic curiosity*, Geometry of constrained dynamical systems (Cambridge, 1994) Cambridge Univ. Press, Cambridge, 1995, pp. 32–37. MR**1318036****[Gro]**M. Gromov,*Kähler hyperbolicity and 𝐿₂-Hodge theory*, J. Differential Geom.**33**(1991), no. 1, 263–292. MR**1085144****[Guo]**Guang-Yuan Guo,*Yang-Mills fields on cylindrical manifolds and holomorphic bundles. I, II*, Comm. Math. Phys.**179**(1996), no. 3, 737–775, 777–788. MR**1400761****[K]**Shoshichi Kobayashi,*Differential geometry of complex vector bundles*, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987. Kan\cflex o Memorial Lectures, 5. MR**909698****[L1]**Peter Li,*Lecture notes on geometric analysis*, Lecture Notes Series, vol. 6, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993. MR**1320504****[L-T]**Peter Li and Luen-Fai Tam,*The heat equation and harmonic maps of complete manifolds*, Invent. Math.**105**(1991), no. 1, 1–46. MR**1109619**, 10.1007/BF01232256**[N1]**L. Ni, Vanishing theorems on complete Kähler manifolds and their applications, J. Diff. Geom.**50**(1998), 89-122. CMP**99:10****[N2]**L. Ni, Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds,*Math. Z.***232**(1999), 331-355. CMP**2000:04****[N-S]**M. S. Narasimhan and C. S. Seshadri,*Stable and unitary vector bundles on a compact Riemann surface*, Ann. of Math. (2)**82**(1965), 540–567. MR**0184252****[Si]**Carlos T. Simpson,*Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization*, J. Amer. Math. Soc.**1**(1988), no. 4, 867–918. MR**944577**, 10.1090/S0894-0347-1988-0944577-9**[Siu]**Yum Tong Siu,*Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics*, DMV Seminar, vol. 8, Birkhäuser Verlag, Basel, 1987. MR**904673****[S-Y]**R. Schoen and S.-T. Yau,*Lectures on differential geometry*, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; Preface translated from the Chinese by Kaising Tso. MR**1333601****[U-Y]**K. Uhlenbeck & S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles,*Comm. Pure Appl. Math.***39**(1986), 257-293. MR**88c:58154**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
58G11

Retrieve articles in all journals with MSC (2000): 58G11

Additional Information

**Lei Ni**

Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Address at time of publication:
Department of Mathematics, Stanford University, Stanford, California 94305

Email:
lni@math.purdue.edu

**Huaiyu Ren**

Affiliation:
Department of Mathematics, University of California, Irvine, California 92697

Email:
hren@math.uci.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-00-02549-6

Received by editor(s):
November 5, 1998

Received by editor(s) in revised form:
March 5, 1999

Published electronically:
August 3, 2000

Additional Notes:
Research was partially supported by an NSF grant

Article copyright:
© Copyright 2000
American Mathematical Society