HermitianEinstein metrics for vector bundles on complete Kähler manifolds
Authors:
Lei Ni and Huaiyu Ren
Journal:
Trans. Amer. Math. Soc. 353 (2001), 441456
MSC (2000):
Primary 58G11
Published electronically:
August 3, 2000
MathSciNet review:
1694377
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we prove the existence of HermitianEinstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the HermitianEinstein equations on holomorphic vector bundles over strictly pseudoconvex domains.
 [AS]
Michael
T. Anderson and Richard
Schoen, Positive harmonic functions on complete manifolds of
negative curvature, Ann. of Math. (2) 121 (1985),
no. 3, 429–461. MR 794369
(87a:58151), http://dx.doi.org/10.2307/1971181
 [ACM]
Patricio
Aviles, H.
Choi, and Mario
Micallef, Boundary behavior of harmonic maps on nonsmooth domains
and complete negatively curved manifolds, J. Funct. Anal.
99 (1991), no. 2, 293–331. MR 1121616
(92j:58025), http://dx.doi.org/10.1016/00221236(91)900435
 [B]
Shigetoshi
Bando, EinsteinHermitian metrics on noncompact Kähler
manifolds, Einstein metrics and YangMills connections (Sanda, 1990)
Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York,
1993, pp. 27–33. MR 1215276
(94d:32040)
 [BS]
Shigetoshi
Bando and YumTong
Siu, Stable sheaves and EinsteinHermitian metrics, Geometry
and analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994,
pp. 39–50. MR 1463962
(98e:32053)
 [CY]
Shiu
Yuen Cheng and Shing
Tung Yau, On the existence of a complete Kähler metric on
noncompact complex manifolds and the regularity of Fefferman’s
equation, Comm. Pure Appl. Math. 33 (1980),
no. 4, 507–544. MR 575736
(82f:53074), http://dx.doi.org/10.1002/cpa.3160330404
 [D1]
S.
K. Donaldson, Anti selfdual YangMills connections over complex
algebraic surfaces and stable vector bundles, Proc. London Math. Soc.
(3) 50 (1985), no. 1, 1–26. MR 765366
(86h:58038), http://dx.doi.org/10.1112/plms/s350.1.1
 [D2]
S.
K. Donaldson, Boundary value problems for YangMills fields,
J. Geom. Phys. 8 (1992), no. 14, 89–122. MR 1165874
(93d:53033), http://dx.doi.org/10.1016/03930440(92)900442
 [D3]
S.
K. Donaldson, Infinite determinants, stable bundles and
curvature, Duke Math. J. 54 (1987), no. 1,
231–247. MR
885784 (88g:32046), http://dx.doi.org/10.1215/S0012709487054147
 [Do]
Harold
Donnelly, 𝐿₂ cohomology of pseudoconvex domains with
complete Kähler metric, Michigan Math. J. 41
(1994), no. 3, 433–442. MR 1297700
(95h:32007), http://dx.doi.org/10.1307/mmj/1029005071
 [GH]
Phillip
Griffiths and Joseph
Harris, Principles of algebraic geometry, WileyInterscience
[John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
(80b:14001)
 [GT]
David
Gilbarg and Neil
S. Trudinger, Elliptic partial differential equations of second
order, 2nd ed., Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vol. 224,
SpringerVerlag, Berlin, 1983. MR 737190
(86c:35035)
 [Gri]
José
M. FigueroaO’Farrill, Obstructions to gauging WZ terms: a
symplectic curiosity, Geometry of constrained dynamical systems
(Cambridge, 1994) Cambridge Univ. Press, Cambridge, 1995,
pp. 32–37. MR 1318036
(96b:58017)
 [Gro]
M.
Gromov, Kähler hyperbolicity and 𝐿₂Hodge
theory, J. Differential Geom. 33 (1991), no. 1,
263–292. MR 1085144
(92a:58133)
 [Guo]
GuangYuan
Guo, YangMills fields on cylindrical manifolds and holomorphic
bundles. I, II, Comm. Math. Phys. 179 (1996),
no. 3, 737–775, 777–788. MR 1400761
(98a:32040)
 [K]
Shoshichi
Kobayashi, Differential geometry of complex vector bundles,
Publications of the Mathematical Society of Japan, vol. 15, Princeton
University Press, Princeton, NJ, 1987. Kan\cflex o Memorial Lectures, 5. MR 909698
(89e:53100)
 [L1]
Peter
Li, Lecture notes on geometric analysis, Lecture Notes Series,
vol. 6, Seoul National University Research Institute of Mathematics
Global Analysis Research Center, Seoul, 1993. MR 1320504
(96m:58269)
 [LT]
Peter
Li and LuenFai
Tam, The heat equation and harmonic maps of complete
manifolds, Invent. Math. 105 (1991), no. 1,
1–46. MR
1109619 (93e:58039), http://dx.doi.org/10.1007/BF01232256
 [N1]
L. Ni, Vanishing theorems on complete Kähler manifolds and their applications, J. Diff. Geom. 50(1998), 89122. CMP 99:10
 [N2]
L. Ni, Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds, Math. Z. 232(1999), 331355. CMP 2000:04
 [NS]
M.
S. Narasimhan and C.
S. Seshadri, Stable and unitary vector bundles on a compact Riemann
surface, Ann. of Math. (2) 82 (1965), 540–567.
MR
0184252 (32 #1725)
 [Si]
Carlos
T. Simpson, Constructing variations of Hodge
structure using YangMills theory and applications to
uniformization, J. Amer. Math. Soc.
1 (1988), no. 4,
867–918. MR
944577 (90e:58026), http://dx.doi.org/10.1090/S08940347198809445779
 [Siu]
Yum
Tong Siu, Lectures on HermitianEinstein metrics for stable bundles
and KählerEinstein metrics, DMV Seminar, vol. 8,
Birkhäuser Verlag, Basel, 1987. MR 904673
(89d:32020)
 [SY]
R.
Schoen and S.T.
Yau, Lectures on differential geometry, Conference Proceedings
and Lecture Notes in Geometry and Topology, I, International Press,
Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching
Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the
Chinese by Ding and S. Y. Cheng; Preface translated from the Chinese by
Kaising Tso. MR
1333601 (97d:53001)
 [UY]
K. Uhlenbeck & S. T. Yau, On the existence of HermitianYangMills connections in stable vector bundles, Comm. Pure Appl. Math. 39(1986), 257293. MR 88c:58154
 [AS]
 M. Anderson & R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Annals of Math. 121(1985), 429461. MR 87a:58151
 [ACM]
 P. Avilés, H. I. Choi and M. Micallef, Boundary behavior of harmonic maps on nonsmooth domains and complete negatively curved manifolds, J. Funct. Anal. 99(1991), 293331. MR 92j:58025
 [B]
 S. Bando, EinsteinHermitian metrics on noncompact Kähler manifolds, Einstein metrics and YangMills connections (Sanda, 1990), 2733, Lecture Notes in Pure and Appl. Math. Dekker, New York, 1993. MR 94d:32040
 [BS]
 S. Bando & S. T. Siu, Stable sheaves and EinsteinHermitian metrics, Geometry and analysis on complex manifolds, 3950, World. Sci. Publishing, River Edge, NY, 1994. MR 98e:32053
 [CY]
 S. Y. Cheng & S. T. Yau, On the existence of a complete Kähler manifolds and the regularity of Fefferman's equation, Commun. Pure Appl. Math. 33(1980), 507544. MR 82f:53074
 [D1]
 S. K. Donaldson, Anti SelfDual YangMills Connections over Complex Algebraic Surfaces and Stable Vector Bundle, Proc. London Math. Soc. (3), 50(1985), 126. MR 86h:58038
 [D2]
 S. K. Donaldson, Boundary value problems for YangMills fields, Journal of Geometry and Physics, 8(1992), 89122. MR 93d:53033
 [D3]
 S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J.54(1987), 231147. MR 88g:32046
 [Do]
 H. Donnelly, cohomology of pseudoconvex domains with complete Kähler metrics, Michigan Math. J. 41(1994), 433442. MR 95h:32007
 [GH]
 P. Griffiths & J. Harris, Principles of Algebraic Geometry, John Wiley, New York, 1978. MR 80b:14001
 [GT]
 D. Gilbarg & N. S. Trudinger, Elliptic partial differential equations of second order, 2nd edition, SpringerVerlag, 1983. MR 86c:35035
 [Gri]
 A. Grigor'yan, Heat kernel upper bounds on a complete noncompact manifold, Rev. Math. Iberoamericana. 10(1994), 395452 MR 96b:58017
 [Gro]
 M. Gromov, Kähler hyperbolicity and Hodge theory, J. Diff. Geom. 33(1991), 263292. MR 92a:58133
 [Guo]
 GY Guo, YangMills fields on cylindrical manifolds and holomorphic bundles I, Commun. Math. Phys. 179(1996), 737775. MR 98a:32040
 [K]
 S. Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton, 1986. MR 89e:53100
 [L1]
 P. Li, Lecture notes on geometric analysis, Research Institute of Mathematics, Global Analysis Center Seoul National University, 1993. MR 96m:58269
 [LT]
 P. Li & L. F. Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105(1991), 146. MR 93e:58039
 [N1]
 L. Ni, Vanishing theorems on complete Kähler manifolds and their applications, J. Diff. Geom. 50(1998), 89122. CMP 99:10
 [N2]
 L. Ni, Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds, Math. Z. 232(1999), 331355. CMP 2000:04
 [NS]
 M. S. Narasimhan & C. S. Seshadri, Stable and unitray vector bundles on a compact Riemann surface, Annals of Math. 82(1965), 540564. MR 32:1725
 [Si]
 C. T. Simpson, Constructing variations of Hodge structure using YangMills theory and applications to uniformization, JAMS. 1 (1988), 867918. MR 90e:58026
 [Siu]
 Y. T. Siu, Lectures on HermitianEinstein metrics for stable bundles and KählerEinstein metrics , Birkhäuser, BaselBoston, 1987. MR 89d:32020
 [SY]
 R. Schoen & S. T. Yau, Lectures on Differential Geometry, Academia Sinica Press, Beijing, 1988; English transl., Internat. Press, Cambridge, MA, 1994. MR 97d:53001
 [UY]
 K. Uhlenbeck & S. T. Yau, On the existence of HermitianYangMills connections in stable vector bundles, Comm. Pure Appl. Math. 39(1986), 257293. MR 88c:58154
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
58G11
Retrieve articles in all journals
with MSC (2000):
58G11
Additional Information
Lei Ni
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Address at time of publication:
Department of Mathematics, Stanford University, Stanford, California 94305
Email:
lni@math.purdue.edu
Huaiyu Ren
Affiliation:
Department of Mathematics, University of California, Irvine, California 92697
Email:
hren@math.uci.edu
DOI:
http://dx.doi.org/10.1090/S0002994700025496
PII:
S 00029947(00)025496
Received by editor(s):
November 5, 1998
Received by editor(s) in revised form:
March 5, 1999
Published electronically:
August 3, 2000
Additional Notes:
Research was partially supported by an NSF grant
Article copyright:
© Copyright 2000 American Mathematical Society
