The completeness of the isomorphism relation for countable Boolean algebras
Authors:
Riccardo Camerlo and Su Gao
Journal:
Trans. Amer. Math. Soc. 353 (2001), 491518
MSC (2000):
Primary 03E15, 06E15
Published electronically:
September 21, 2000
MathSciNet review:
1804507
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show that the isomorphism relation for countable Boolean algebras is Borel complete, i.e., the isomorphism relation for arbitrary countable structures is Borel reducible to that for countable Boolean algebras. This implies that Ketonen's classification of countable Boolean algebras is optimal in the sense that the kind of objects used for the complete invariants cannot be improved in an essential way. We also give a stronger form of the Vaught conjecture for Boolean algebras which states that, for any complete firstorder theory of Boolean algebras that has more than one countable model up to isomorphism, the class of countable models for the theory is Borel complete. The results are applied to settle many other classification problems related to countable Boolean algebras and separable Boolean spaces. In particular, we will show that the following equivalence relations are Borel complete: the translation equivalence between closed subsets of the Cantor space, the isomorphism relation between ideals of the countable atomless Boolean algebra, the conjugacy equivalence of the autohomeomorphisms of the Cantor space, etc. Another corollary of our results is the Borel completeness of the commutative AF algebras, which in turn gives rise to similar results for Bratteli diagrams and dimension groups.
 [An58]
R.
D. Anderson, The algebraic simplicity of certain groups of
homeomorphisms, Amer. J. Math. 80 (1958),
955–963. MR 0098145
(20 #4607)
 [Ba75]
Jon
Barwise, Admissible sets and structures, SpringerVerlag,
BerlinNew York, 1975. An approach to definability theory; Perspectives in
Mathematical Logic. MR 0424560
(54 #12519)
 [BK96]
Howard
Becker and Alexander
S. Kechris, The descriptive set theory of Polish group
actions, London Mathematical Society Lecture Note Series,
vol. 232, Cambridge University Press, Cambridge, 1996. MR 1425877
(98d:54068)
 [Bl98]
Bruce
Blackadar, 𝐾theory for operator algebras, 2nd ed.,
Mathematical Sciences Research Institute Publications, vol. 5,
Cambridge University Press, Cambridge, 1998. MR 1656031
(99g:46104)
 [Br72]
Ola
Bratteli, Inductive limits of finite dimensional
𝐶*algebras, Trans. Amer. Math.
Soc. 171 (1972),
195–234. MR 0312282
(47 #844), http://dx.doi.org/10.1090/S00029947197203122822
 [FS89]
Harvey
Friedman and Lee
Stanley, A Borel reducibility theory for classes of countable
structures, J. Symbolic Logic 54 (1989), no. 3,
894–914. MR 1011177
(91f:03062), http://dx.doi.org/10.2307/2274750
 [Ga98]
S. Gao, The isomorphism relation between countable models and definable equivalence relations, PhD dissertation, UCLA, 1998.
 [Go97]
Sergei
S. Goncharov, Countable Boolean algebras and decidability,
Siberian School of Algebra and Logic, Consultants Bureau, New York, 1997.
MR
1444819 (98h:03044b)
 [Ha76]
William
Hanf, Representing real numbers in denumerable Boolean
algebras, Fund. Math. 91 (1976), no. 3,
167–170. MR 0419228
(54 #7252)
 [Hj98]
G. Hjorth, Classification and Orbit Equivalence Relations, Mathematical Surveys and Monographs, 75, Amer. Math. Soc., Providence, RI, 2000. CMP 2000:05
 [HK95]
Greg
Hjorth and Alexander
S. Kechris, Analytic equivalence relations and Ulmtype
classifications, J. Symbolic Logic 60 (1995),
no. 4, 1273–1300. MR 1367210
(96m:54068), http://dx.doi.org/10.2307/2275888
 [Ho93]
Wilfrid
Hodges, Model theory, Encyclopedia of Mathematics and its
Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741
(94e:03002)
 [Iv91]
Paul
Iverson, The number of countable isomorphism types of complete
extensions of the theory of Boolean algebras, Colloq. Math.
62 (1991), no. 2, 181–187. MR 1142919
(93a:03038)
 [Kec95]
Alexander
S. Kechris, Classical descriptive set theory, Graduate Texts
in Mathematics, vol. 156, SpringerVerlag, New York, 1995. MR 1321597
(96e:03057)
 [Kec98]
A. S. Kechris, The descriptive classification of some classes of algebras, Proceedings of the Sixth Asian Logic Conference (1998), 121149.
 [Ket78]
Jussi
Ketonen, The structure of countable Boolean algebras, Ann. of
Math. (2) 108 (1978), no. 1, 41–89. MR 0491391
(58 #10647)
 [Ko89]
Sabine
Koppelberg, Handbook of Boolean algebras. Vol. 1,
NorthHolland Publishing Co., Amsterdam, 1989. Edited by J. Donald Monk and
Robert Bonnet. MR
991565 (90k:06002)
 [Mu90]
Gerard
J. Murphy, 𝐶*algebras and operator theory, Academic
Press, Inc., Boston, MA, 1990. MR 1074574
(91m:46084)
 [Na72]
M.
A. Naĭmark, Normed algebras, 3rd ed., WoltersNoordhoff
Publishing, Groningen, 1972. Translated from the second Russian edition by
Leo F. Boron; WoltersNoordhoff Series of Monographs and Textbooks on Pure
and Applied Mathematics. MR 0438123
(55 #11042)
 [Pa95]
G. Panti, La logica infinitovalente di ukasiewicz, PhD dissertation, Università degli studi di Siena, 1995.
 [Pi89]
R. S. Pierce, Countable Boolean algebras, in Handbook of Boolean Algebras (J. D. Monk and R. Bonnet eds.), Elsevier Science Publishers, 1989, 775876. CMP 21:10
 [vM89]
J.
van Mill, Infinitedimensional topology, NorthHolland
Mathematical Library, vol. 43, NorthHolland Publishing Co.,
Amsterdam, 1989. Prerequisites and introduction. MR 977744
(90a:57025)
 [An58]
 R. D. Anderson, The algebraic simplicity of certain groups of homeomorphisms, American Journal of Mathematics 80 (1958), 955963. MR 20:4607
 [Ba75]
 J. Barwise, Admissible Sets and Structures: An Approach to Definability Theory, Perspectives in Mathematical Logic, SpringerVerlag, Berlin, 1975. MR 54:12519
 [BK96]
 H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Notes Series 232, Cambridge University Press, 1996. MR 98d:54068
 [Bl98]
 B. Blackadar, Ktheory for Operator Algebras, Second Edition, Cambridge University Press, 1998. MR 99g:46104
 [Br72]
 O. Bratteli, Inductive limits of finite dimensional algebras, Transactions of the American Mathematical Society 171 (1972), 195234. MR 47:844
 [FS89]
 H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, The Journal of Symbolic Logic 54 (1989), 894914. MR 91f:03062
 [Ga98]
 S. Gao, The isomorphism relation between countable models and definable equivalence relations, PhD dissertation, UCLA, 1998.
 [Go97]
 S. S. Goncharov, Countable Boolean Algebras and Decidability, Consultants Bureau, 1997. MR 98h:03044b
 [Ha76]
 W. Hanf, Representing real numbers in denumerable Boolean algebras, Fundamenta Mathematicae 91 (1976), 167170. MR 54:7252
 [Hj98]
 G. Hjorth, Classification and Orbit Equivalence Relations, Mathematical Surveys and Monographs, 75, Amer. Math. Soc., Providence, RI, 2000. CMP 2000:05
 [HK95]
 G. Hjorth and A. S. Kechris, Analytic equivalence relations and Ulm type classifications, The Journal of Symbolic Logic 60 (1995), 12731300. MR 96m:54068
 [Ho93]
 W. Hodges, Model Theory, Cambridge University Press, 1993. MR 94e:03002
 [Iv91]
 P. Iverson, The number of countable isomorphism types of the theory of Boolean algebras, Colloquium Mathematicum 62 (2) (1991), 181187. MR 93a:03038
 [Kec95]
 A. S. Kechris, Classical Descriptive Set Theory, SpringerVerlag, 1995. MR 96e:03057
 [Kec98]
 A. S. Kechris, The descriptive classification of some classes of algebras, Proceedings of the Sixth Asian Logic Conference (1998), 121149.
 [Ket78]
 J. Ketonen, The structure of countable Boolean algebras, Annals of Mathematics 108 (1978), 4189. MR 58:10647
 [Ko89]
 S. Koppelberg, Handbook of Boolean Algebras, vol. 1 (J.D. Monk ed.), NorthHolland, 1989. MR 90k:06002
 [Mu90]
 G. J. Murphy, algebras and Operator Theory, Academic Press, 1990. MR 91m:46084
 [Na72]
 M. A. Naimark, Normed Algebras, WoltersNoordhoff, 1972. MR 55:11042
 [Pa95]
 G. Panti, La logica infinitovalente di ukasiewicz, PhD dissertation, Università degli studi di Siena, 1995.
 [Pi89]
 R. S. Pierce, Countable Boolean algebras, in Handbook of Boolean Algebras (J. D. Monk and R. Bonnet eds.), Elsevier Science Publishers, 1989, 775876. CMP 21:10
 [vM89]
 J. van Mill, Infinite Dimensional Topology. Prerequisites and Introduction, Elsevier Science Publishers, 1989. MR 90a:57025
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
03E15,
06E15
Retrieve articles in all journals
with MSC (2000):
03E15,
06E15
Additional Information
Riccardo Camerlo
Affiliation:
Department of Mathematics, California Institute of Technology, Pasadena, California 91125
Email:
camerlo@its.caltech.edu
Su Gao
Affiliation:
Department of Mathematics, California Institute of Technology, Pasadena, California 91125
Email:
sugao@its.caltech.edu
DOI:
http://dx.doi.org/10.1090/S0002994700026593
PII:
S 00029947(00)026593
Keywords:
Borel reducibility,
polish group actions,
definable equivalence relations,
separable Boolean spaces
Received by editor(s):
March 11, 1999
Published electronically:
September 21, 2000
Article copyright:
© Copyright 2000
American Mathematical Society
