New range theorems for the dual Radon transform

Author:
Alexander Katsevich

Journal:
Trans. Amer. Math. Soc. **353** (2001), 1089-1102

MSC (2000):
Primary 44A12

DOI:
https://doi.org/10.1090/S0002-9947-00-02641-6

Published electronically:
October 11, 2000

MathSciNet review:
1804413

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Three new range theorems are established for the dual Radon transform : on functions that do not decay fast at infinity (and admit an asymptotic expansion), on , and on . Here , and acts on even functions .

**[BH86]**N. Bleistein and R. Handelsman,*Asymptotic expansions of integrals*, Dover, New York, 1986. MR**89h:41049****[Fed77]**M. V. Fedoriuk,*Metod perevala*, Nauka, Moscow, 1977, (Russian). MR**58:22580****[GGV66]**I.M. Gelfand, M.I. Graev, and N.Ya. Vilenkin,*Generalized functions. Volume 5: Integral geometry and representation theory*, Academic Press, New York, 1966. MR**55:8786e**; MR**34:7726****[Gon84]**F. B. Gonzalez,*Radon transforms on Grassmann manifolds*, Ph.D. thesis, M.I.T., 1984.**[Gon87]**F. B. Gonzalez,*Radon transforms on Grassmann manifolds*, J. Funct. Anal.**71**(1987), 339-362. MR**89a:53081****[GR94]**I. S. Gradshteyn and I. M. Ryzhik,*Table of integrals, series, and products*, 5th ed., Academic Press, Boston, 1994. MR**94g:00008****[GS64]**I. M. Gelfand and G.E. Shilov,*Generalized functions. Volume 1: Properties and operations*, Academic Press, New York, 1964. MR**55:8786a****[Hel65]**S. Helgason,*The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds*, Acta Mathematica**113**(1965), 153-170. MR**30:2530****[Hel80]**S. Helgason,*The Radon transform*, Birkhäuser, Boston, 1980. MR**83f:43012****[Hel82]**S. Helgason,*Ranges of Radon transforms*, Proceedings of Symposia in Applied Mathematics, Vol. 27 (Providence, RI) (L. Shepp, ed.), Amer. Math. Soc., 1982, pp. 63-70. MR**84h:44016****[Her83]**A. Hertle,*Continuity of the Radon transform and its inverse on Euclidean spaces*, Math. Z.**184**(1983), 165-192. MR**86e:44004a****[Her84]**A. Hertle,*On the range of the Radon transform and its dual*, Math. Ann.**267**(1984), 91-99. MR**86e:44004b****[Hor83]**L. Hormander,*The analysis of linear partial differential operators, Vol. I*, Springer-Verlag, New York, 1983. MR**85g:35002a****[Kat97]**A. Katsevich,*Range of the Radon transform on functions which do not decay fast at infinity*, SIAM Journal of Mathematical Analysis**28**(1997), no. 4, 852-866. MR**98g:44001****[Lou84]**A. K. Louis,*Orthogonal function series expansions and the null space of the Radon transform*, SIAM J. Math. Anal.**15**(1984), 621-633. MR**85j:44003****[LP70]**P. Lax and R. Phillips,*The Paley-Wiener theorem for the Radon transform*, Comm. Pure Appl. Math.**23**(1970), 409-424. MR**42:8189****[Lud60]**D. Ludwig,*The Radon transform on Euclidean spaces*, Comm. Pure Appl. Math.**19**(1960), 49-81. MR**32:8064****[Ram95]**A.G. Ramm,*The Radon transform is an isomorphism between and*, Appl. Math. Lett.**8**(1995), 25-29. CMP**96:02****[Ram96]**A.G. Ramm,*Inversion formula and singularities of the solution for the back-projection operator in tomography*, Proc. Amer. Math. Soc.**124**(1996), 567-577. MR**96d:44001****[RK96]**A. Ramm and A. Katsevich,*The Radon transform and local tomography*, CRC Press, Boca Raton, Florida, 1996. MR**97g:44009****[SM88]**D. C. Solmon and W. Madych,*A range theorem for the Radon transform*, Proceedings of the Amer. Math. Soc.**104**(1988), 79-85. MR**90i:44003****[Sol87]**D.C. Solmon,*Asymptotic formulas for the dual Radon transform and applications*, Math. Z.**195**(1987), 321-343. MR**88i:44006****[SSW77]**K. Smith, D. Solmon, and S. Wagner,*Practical and mathematical aspects of the problem of reconstructing objects from radiographs*, Bull of Amer. Math. Soc.**83**(1977), 1227-1270. MR**58:9394a**; MR**58:9394b****[Won89]**R. Wong,*Asymptotic approximations of integrals*, Academic Press, Boston, 1989. MR**90j:41061**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
44A12

Retrieve articles in all journals with MSC (2000): 44A12

Additional Information

**Alexander Katsevich**

Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32816

Email:
akatsevi@pegasus.cc.ucf.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02641-6

Keywords:
Dual Radon transform,
range theorems,
asymptotic expansions

Received by editor(s):
January 20, 1998

Received by editor(s) in revised form:
June 24, 1999

Published electronically:
October 11, 2000

Additional Notes:
This research was supported in part by NSF grant DMS-9704285

Article copyright:
© Copyright 2000
American Mathematical Society