New range theorems for the dual Radon transform

Author:
Alexander Katsevich

Journal:
Trans. Amer. Math. Soc. **353** (2001), 1089-1102

MSC (2000):
Primary 44A12

Published electronically:
October 11, 2000

MathSciNet review:
1804413

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Three new range theorems are established for the dual Radon transform : on functions that do not decay fast at infinity (and admit an asymptotic expansion), on , and on . Here , and acts on even functions .

**[BH86]**Margareta Heilmann,*𝐿_{𝑝}-saturation of some modified Bernstein operators*, J. Approx. Theory**54**(1988), no. 3, 260–273. MR**960049**, 10.1016/0021-9045(88)90003-2**[Fed77]**M. V. Fedoryuk,*Metod perevala*, Izdat. “Nauka”, Moscow, 1977 (Russian). MR**0507923****[GGV66]**I. M. Gel′fand, M. I. Graev, and N. Ya. Vilenkin,*Generalized functions. Vol. 5*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1966 [1977]. Integral geometry and representation theory; Translated from the Russian by Eugene Saletan. MR**0435835**

I. M. Gel′fand, M. I. Graev, and N. Ya. Vilenkin,*Generalized functions. Vol. 5: Integral geometry and representation theory*, Translated from the Russian by Eugene Saletan, Academic Press, New York-London, 1966. MR**0207913****[Gon84]**F. B. Gonzalez,*Radon transforms on Grassmann manifolds*, Ph.D. thesis, M.I.T., 1984.**[Gon87]**Fulton B. Gonzalez,*Radon transforms on Grassmann manifolds*, J. Funct. Anal.**71**(1987), no. 2, 339–362. MR**880984**, 10.1016/0022-1236(87)90008-5**[GR94]**I. S. Gradshteyn and I. M. Ryzhik,*Table of integrals, series, and products*, 5th ed., Academic Press, Inc., Boston, MA, 1994. Translation edited and with a preface by Alan Jeffrey. MR**1243179****[GS64]**I. M. Gel′fand and G. E. Shilov,*Generalized functions. Vol. 1*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR**0435831****[Hel65]**Sigurđur Helgason,*The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds*, Acta Math.**113**(1965), 153–180. MR**0172311****[Hel80]**Sigurdur Helgason,*The Radon transform*, Progress in Mathematics, vol. 5, Birkhäuser, Boston, Mass., 1980. MR**573446****[Hel82]**Sigurdur Helgason,*Ranges of Radon transforms*, Computed tomography (Cincinnati, Ohio, 1982) Proc. Sympos. Appl. Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1982, pp. 63–70. MR**692054****[Her83]**Alexander Hertle,*Continuity of the Radon transform and its inverse on Euclidean space*, Math. Z.**184**(1983), no. 2, 165–192. MR**716270**, 10.1007/BF01252856**[Her84]**Alexander Hertle,*On the range of the Radon transform and its dual*, Math. Ann.**267**(1984), no. 1, 91–99. MR**737337**, 10.1007/BF01458472**[Hor83]**Lars Hörmander,*The analysis of linear partial differential operators. I*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR**717035****[Kat97]**Alexander I. Katsevich,*Range of the Radon transform on functions which do not decay fast at infinity*, SIAM J. Math. Anal.**28**(1997), no. 4, 852–866. MR**1453309**, 10.1137/S0036141095289518**[Lou84]**Alfred K. Louis,*Orthogonal function series expansions and the null space of the Radon transform*, SIAM J. Math. Anal.**15**(1984), no. 3, 621–633. MR**740700**, 10.1137/0515047**[LP70]**Peter D. Lax and Ralph S. Phillips,*The Paley-Wiener theorem for the Radon transform*, Comm. Pure Appl. Math.**23**(1970), 409–424. MR**0273309****[Lud60]**Donald Ludwig,*The Radon transform on euclidean space*, Comm. Pure Appl. Math.**19**(1966), 49–81. MR**0190652****[Ram95]**A.G. Ramm,*The Radon transform is an isomorphism between and*, Appl. Math. Lett.**8**(1995), 25-29. CMP**96:02****[Ram96]**A. G. Ramm,*Inversion formula and singularities of the solution for the back-projection operator in tomography*, Proc. Amer. Math. Soc.**124**(1996), no. 2, 567–577. MR**1301044**, 10.1090/S0002-9939-96-03155-3**[RK96]**A. G. Ramm and A. I. Katsevich,*The Radon transform and local tomography*, CRC Press, Boca Raton, FL, 1996. MR**1384070****[SM88]**W. R. Madych and D. C. Solmon,*A range theorem for the Radon transform*, Proc. Amer. Math. Soc.**104**(1988), no. 1, 79–85. MR**958047**, 10.1090/S0002-9939-1988-0958047-7**[Sol87]**Donald C. Solmon,*Asymptotic formulas for the dual Radon transform and applications*, Math. Z.**195**(1987), no. 3, 321–343. MR**895305**, 10.1007/BF01161760**[SSW77]**Kennan T. Smith, Donald C. Solmon, and Sheldon L. Wagner,*Practical and mathematical aspects of the problem of reconstructing objects from radiographs*, Bull. Amer. Math. Soc.**83**(1977), no. 6, 1227–1270. MR**0490032**, 10.1090/S0002-9904-1977-14406-6

Kennan T. Smith, Donald C. Solmon, and Sheldon L. Wagner,*Addendum to: “Practical and mathematical aspects of the problem of reconstructing objects from radiographs” (Bull. Amer. Math. Soc. 83 (1977), no. 6, 1227–1270)*, Bull. Amer. Math. Soc.**84**(1978), no. 4, 691. MR**0490033**, 10.1090/S0002-9904-1978-14526-1**[Won89]**R. Wong,*Asymptotic approximations of integrals*, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1989. MR**1016818**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
44A12

Retrieve articles in all journals with MSC (2000): 44A12

Additional Information

**Alexander Katsevich**

Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32816

Email:
akatsevi@pegasus.cc.ucf.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02641-6

Keywords:
Dual Radon transform,
range theorems,
asymptotic expansions

Received by editor(s):
January 20, 1998

Received by editor(s) in revised form:
June 24, 1999

Published electronically:
October 11, 2000

Additional Notes:
This research was supported in part by NSF grant DMS-9704285

Article copyright:
© Copyright 2000
American Mathematical Society