A model for the homotopy theory of homotopy theory
Author:
Charles Rezk
Journal:
Trans. Amer. Math. Soc. 353 (2001), 9731007
MSC (2000):
Primary 55U35; Secondary 18G30
Published electronically:
June 20, 2000
MathSciNet review:
1804411
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We describe a category, the objects of which may be viewed as models for homotopy theories. We show that for such models, ``functors between two homotopy theories form a homotopy theory'', or more precisely that the category of such models has a wellbehaved internal homobject.
 [And71]
D.
W. Anderson, Spectra and Γsets, Algebraic topology
(Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis.,
1970), Amer. Math. Soc., Providence, R.I., 1971, pp. 23–30. MR 0367990
(51 #4232)
 [BK72]
A.
K. Bousfield and D.
M. Kan, Homotopy limits, completions and localizations,
Lecture Notes in Mathematics, Vol. 304, SpringerVerlag, Berlin, 1972. MR 0365573
(51 #1825)
 [DHK]
W. G. Dwyer, P. Hirschhorn, and D. M. Kan, General abstract homotopy theory, in preperation.
 [DK80]
W.
G. Dwyer and D.
M. Kan, Function complexes in homotopical algebra, Topology
19 (1980), no. 4, 427–440. MR 584566
(81m:55018), http://dx.doi.org/10.1016/00409383(80)900257
 [DK84a]
W.
G. Dwyer and D.
M. Kan, A classification theorem for diagrams of simplicial
sets, Topology 23 (1984), no. 2, 139–155.
MR 744846
(86c:55010a), http://dx.doi.org/10.1016/00409383(84)900351
 [DK84b]
W.
G. Dwyer and D.
M. Kan, Realizing diagrams in the homotopy
category by means of diagrams of simplicial sets, Proc. Amer. Math. Soc. 91 (1984), no. 3, 456–460. MR 744648
(86c:55010b), http://dx.doi.org/10.1090/S00029939198407446484
 [DKS93]
W.
G. Dwyer, D.
M. Kan, and C.
R. Stover, An 𝐸² model category structure for pointed
simplicial spaces, J. Pure Appl. Algebra 90 (1993),
no. 2, 137–152. MR 1250765
(95c:55027), http://dx.doi.org/10.1016/00224049(93)90126E
 [DS95]
W.
G. Dwyer and J.
Spaliński, Homotopy theories and model categories,
Handbook of algebraic topology, NorthHolland, Amsterdam, 1995,
pp. 73–126. MR 1361887
(96h:55014), http://dx.doi.org/10.1016/B9780444817792/500031
 [GJ]
P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Progress in Math., vol. 174, Birkhäuser, Basel, 1999. CMP 2000:02
 [Hel88]
Alex
Heller, Homotopy theories, Mem. Amer. Math. Soc.
71 (1988), no. 383, vi+78. MR 920963
(89b:55013), http://dx.doi.org/10.1090/memo/0383
 [Hir]
P. Hirschhorn, Localization in model categories, http://wwwmath.mit.edu/psh.
 [Jar87]
J.
F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra
47 (1987), no. 1, 35–87. MR 906403
(88j:18005), http://dx.doi.org/10.1016/00224049(87)901009
 [Jar96]
J.
F. Jardine, Boolean localization, in practice, Doc. Math.
1 (1996), No. 13, 245–275 (electronic). MR 1405671
(97h:55023)
 [May67]
J.
Peter May, Simplicial objects in algebraic topology, Van
Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc.,
Princeton, N.J.Toronto, Ont.London, 1967. MR 0222892
(36 #5942)
 [Qui67]
Daniel
G. Quillen, Homotopical algebra, Lecture Notes in Mathematics,
No. 43, SpringerVerlag, Berlin, 1967. MR 0223432
(36 #6480)
 [Qui69]
Daniel
Quillen, Rational homotopy theory, Ann. of Math. (2)
90 (1969), 205–295. MR 0258031
(41 #2678)
 [Ree]
C. L. Reedy, Homotopy theory of model categories, unpublished manuscript.
 [Seg74]
Graeme
Segal, Categories and cohomology theories, Topology
13 (1974), 293–312. MR 0353298
(50 #5782)
 [Tho79]
R.
W. Thomason, Uniqueness of delooping machines, Duke Math. J.
46 (1979), no. 2, 217–252. MR 534053
(80e:55013)
 [And71]
 D. W. Anderson, Spectra and sets, Algebraic Topology (A. Liulevicius, ed.), Proceedings of symposia in pure mathematics, no. XXII, Amer. Math. Soc., 1971, pp. 2330.MR 51:4232
 [BK72]
 A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, SpringerVerlag, 1972. MR 51:1825
 [DHK]
 W. G. Dwyer, P. Hirschhorn, and D. M. Kan, General abstract homotopy theory, in preperation.
 [DK80]
 W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology 19 (1980), 427440. MR 81m:55018
 [DK84a]
 W. G. Dwyer and D. M. Kan, A classification theorem for diagrams of simplicial sets, Topology 23 (1984), 139155. MR 86c:55010a
 [DK84b]
 W. G. Dwyer and D. M. Kan, Realizing diagrams in the homotopy category by means of diagrams of simplicial sets, Proc. Amer. Math. Soc. 91 (1984), 456460. MR 86c:55010b
 [DKS93]
 W. G. Dwyer, D. M. Kan, and C. R. Stover, An model category structure for pointed simplicial spaces, Journal of Pure and Applied Algebra 90 (1993), 137152. MR 95c:55027
 [DS95]
 W. G. Dwyer and J. Spalinski, Homotopy theories and model categories, Handbook of algebraic topology (I. M. James, ed.), Elsevier Science B. V., 1995, pp. 73126. MR 96h:55014
 [GJ]
 P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Progress in Math., vol. 174, Birkhäuser, Basel, 1999. CMP 2000:02
 [Hel88]
 A. Heller, Homotopy theories, Memoirs of the Amer. Math. Soc., no. 383, (1988).MR 89b:55013
 [Hir]
 P. Hirschhorn, Localization in model categories, http://wwwmath.mit.edu/psh.
 [Jar87]
 J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), 3587. MR 88j:18005
 [Jar96]
 J. F. Jardine, Boolean localization, in practice, Doc. Math. 1 (1996), No. 13, 245275 (electronic). MR 97h:55023
 [May67]
 J. P. May, Simplicial objects in algebraic topology, University of Chicago Press, 1967. MR 36:5942
 [Qui67]
 D. G. Quillen, Homotopical algebra, Lecture Notes in Mathematics 43, SpringerVerlag, 1967. MR 36:6480
 [Qui69]
 D. G. Quillen, Rational homotopy theory, Annals of Math 90 (1969), 6587. MR 41:2678
 [Ree]
 C. L. Reedy, Homotopy theory of model categories, unpublished manuscript.
 [Seg74]
 G. Segal, Categories and cohomology theories, Topology 13 (1974), 293312. MR 50:5782
 [Tho79]
 R. W. Thomason, Uniqueness of delooping machines, Duke Math. J. 46 (1979), 217252.MR 80e:55013
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
55U35,
18G30
Retrieve articles in all journals
with MSC (2000):
55U35,
18G30
Additional Information
Charles Rezk
Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208
Email:
rezk@math.nwu.edu
DOI:
http://dx.doi.org/10.1090/S0002994700026532
PII:
S 00029947(00)026532
Keywords:
Homotopy theory,
simplicial spaces,
localization,
closed model categories
Received by editor(s):
November 4, 1998
Published electronically:
June 20, 2000
Article copyright:
© Copyright 2000 American Mathematical Society
