A model for the homotopy theory of homotopy theory

Author:
Charles Rezk

Journal:
Trans. Amer. Math. Soc. **353** (2001), 973-1007

MSC (2000):
Primary 55U35; Secondary 18G30

Published electronically:
June 20, 2000

MathSciNet review:
1804411

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We describe a category, the objects of which may be viewed as models for homotopy theories. We show that for such models, ``functors between two homotopy theories form a homotopy theory'', or more precisely that the category of such models has a well-behaved internal hom-object.

**[And71]**D. W. Anderson,*Spectra and Γ-sets*, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 23–30. MR**0367990****[BK72]**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR**0365573****[DHK]**W. G. Dwyer, P. Hirschhorn, and D. M. Kan,*General abstract homotopy theory*, in preperation.**[DK80]**W. G. Dwyer and D. M. Kan,*Function complexes in homotopical algebra*, Topology**19**(1980), no. 4, 427–440. MR**584566**, 10.1016/0040-9383(80)90025-7**[DK84a]**W. G. Dwyer and D. M. Kan,*A classification theorem for diagrams of simplicial sets*, Topology**23**(1984), no. 2, 139–155. MR**744846**, 10.1016/0040-9383(84)90035-1**[DK84b]**W. G. Dwyer and D. M. Kan,*Realizing diagrams in the homotopy category by means of diagrams of simplicial sets*, Proc. Amer. Math. Soc.**91**(1984), no. 3, 456–460. MR**744648**, 10.1090/S0002-9939-1984-0744648-4**[DKS93]**W. G. Dwyer, D. M. Kan, and C. R. Stover,*An 𝐸² model category structure for pointed simplicial spaces*, J. Pure Appl. Algebra**90**(1993), no. 2, 137–152. MR**1250765**, 10.1016/0022-4049(93)90126-E**[DS95]**W. G. Dwyer and J. Spaliński,*Homotopy theories and model categories*, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. MR**1361887**, 10.1016/B978-044481779-2/50003-1**[GJ]**P. G. Goerss and J. F. Jardine,*Simplicial homotopy theory*, Progress in Math., vol. 174, Birkhäuser, Basel, 1999. CMP**2000:02****[Hel88]**Alex Heller,*Homotopy theories*, Mem. Amer. Math. Soc.**71**(1988), no. 383, vi+78. MR**920963**, 10.1090/memo/0383**[Hir]**P. Hirschhorn,*Localization in model categories*, http://www-math.mit.edu/psh.**[Jar87]**J. F. Jardine,*Simplicial presheaves*, J. Pure Appl. Algebra**47**(1987), no. 1, 35–87. MR**906403**, 10.1016/0022-4049(87)90100-9**[Jar96]**J. F. Jardine,*Boolean localization, in practice*, Doc. Math.**1**(1996), No. 13, 245–275 (electronic). MR**1405671****[May67]**J. Peter May,*Simplicial objects in algebraic topology*, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0222892****[Qui67]**Daniel G. Quillen,*Homotopical algebra*, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR**0223432****[Qui69]**Daniel Quillen,*Rational homotopy theory*, Ann. of Math. (2)**90**(1969), 205–295. MR**0258031****[Ree]**C. L. Reedy,*Homotopy theory of model categories*, unpublished manuscript.**[Seg74]**Graeme Segal,*Categories and cohomology theories*, Topology**13**(1974), 293–312. MR**0353298****[Tho79]**R. W. Thomason,*Uniqueness of delooping machines*, Duke Math. J.**46**(1979), no. 2, 217–252. MR**534053**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
55U35,
18G30

Retrieve articles in all journals with MSC (2000): 55U35, 18G30

Additional Information

**Charles Rezk**

Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208

Email:
rezk@math.nwu.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02653-2

Keywords:
Homotopy theory,
simplicial spaces,
localization,
closed model categories

Received by editor(s):
November 4, 1998

Published electronically:
June 20, 2000

Article copyright:
© Copyright 2000
American Mathematical Society