Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Algebraic isomorphisms of limit algebras


Authors: A. P. Donsig, T. D. Hudson and E. G. Katsoulis
Journal: Trans. Amer. Math. Soc. 353 (2001), 1169-1182
MSC (2000): Primary 47D25, 46K50, 46H40
DOI: https://doi.org/10.1090/S0002-9947-00-02714-8
Published electronically: November 17, 2000
MathSciNet review: 1804417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We prove that algebraic isomorphisms between limit algebras are automatically continuous, and consider the consequences of this result. In particular, we give partial solutions to a conjecture and an open problem by Power. As a further consequence, we describe epimorphisms between various classes of limit algebras.


References [Enhancements On Off] (What's this?)

  • 1. R.L. Baker, Triangular UHF algebras, J. Funct. Anal. 91 (1990), 182-212. MR 91d:46056
  • 2. H.G. Dales, R.J. Loy, and G.A. Willis, Homomorphisms and derivations from ${B}({E})$, J. Funct. Anal. 120 (1994), 201-219. MR 95b:46068
  • 3. A. Donsig and A. Hopenwasser, Order preservation in limit algebras, J. Funct. Anal. 133 (1995), 342-394. MR 96k:46099
  • 4. A. Donsig, A. Hopenwasser, T.D. Hudson, M.P. Lamoureux, and B. Solel, Meet irreducible ideals in direct limit algebras, Math. Scand. (to appear).
  • 5. A. Donsig and T. Hudson, The lattice of ideals of a triangular AF algebra, J. Funct. Anal. 138 (1996), 1-39. MR 97e:47068
  • 6. M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97-105. MR 3:51e; MR 2:224d
  • 7. A. Hopenwasser and S.C. Power, Classification of limits of triangular matrix algebras, Proc. Edinburgh Math. Soc. 36 (1992), 107-121. MR 94k:47068
  • 8. T.D. Hudson, Ideals in triangular AF algebras, Proc. London Math. Soc. (3) 69 (1994), 345-376. MR 95d:46060
  • 9. T.D. Hudson and E.G. Katsoulis, Primitive triangular UHF algebras, J. Funct. Anal. 160 (1998) 1-27. MR 99m:46135
  • 10. B.E. Johnson, Continuity of homomorphisms of algebras of operators, J. London Math. Soc. (2) 42 (1967), 537-541. MR 35:5953
  • 11. -, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 537-539. MR 35:2142
  • 12. R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras, vol. I, Pure and Applied Mathematics, no. 100, Academic Press, San Diego, CA, 1983. MR 85j:46099
  • 13. L. Mastrangelo, P.S. Muhly, and B. Solel, Locating the radical of a triangular operator algebra, Math. Proc. Cambridge Philos. Soc. 115 (1994), 27-38. MR 94m:46089
  • 14. J.R. Peters and Y.T. Poon, Lexicographic TAF algebras, Trans. Amer. Math. Soc. 349 (1997), 4825-4855. MR 98d:47098
  • 15. J.R. Peters, Y.T. Poon, and B.H. Wagner, Triangular AF algebras, J. Operator Theory 23 (1990), 81-114. MR 91h:46102
  • 16. -, Analytic TAF algebras, Canad. J. Math. 45 (1993), 1009-1031; Correction to: Analytic TAF algebras, 46 (1994), 395-396. MR 94m:46113a; MR 94m:46113b
  • 17. Y.T. Poon, A complete isomorphism invariant for a class of triangular UHF algebras, J. Operator Theory 27 (1992), 221-230. MR 95c:46093
  • 18. Y.T. Poon and B.H. Wagner, Z-analytic TAF algebras and dynamical systems, Houston J. Math. 19 (1993), 181-199. MR 95f:46113
  • 19. S.C. Power, On Ideals of Nest Subalgebras of ${C^*}$-algebras, Proc. London Math. Soc. (3) 50 (1985), 314-332. MR 86d:47057
  • 20. -, Classification of tensor products of triangular operator algebras, Proc. London Math. Soc. (3) 61 (1990), 571-614. MR 92a:47053
  • 21. -, The classification of triangular subalgebras of AF ${C^*}$-algebras, Bull. London Math. Soc. 22 (1990), 269-272. MR 91e:46078
  • 22. -, Algebraic order on $K_0$ and approximately finite operator algebras, J. Operator Theory 27 (1992), 87-106. MR 95b:46100
  • 23. -, Limit algebras: an introduction to subalgebras of $C^*$-algebras, Pitman Research Notes in Mathematics, no. 278, Longman Scientific and Technical, London, 1992. MR 94g:46001
  • 24. -, Infinite lexicographic products of triangular algebras, Bull. London Math. Soc. 27 (1995), 273-277. MR 96e:47047
  • 25. -, Lexicographic semigroupoids, Ergodic Theory Dynamical Systems 16 (1996), 365-377. MR 97d:47050
  • 26. -, Errata for Limit algebras, available from http://www.maths.lancs.ac.uk/ power/.
  • 27. C. Qiu, Algebra isomorphisms of triangular operator algebras, preprint, 1993.
  • 28. C.E. Rickart, The uniqueness of norm problem in Banach algebras, Ann. of Math (2) 51 (1950), 615-628. MR 11:670d
  • 29. G.E. Silov, On regular normed rings, Trav. Inst. Math. Stekloff 21 (1947), 118 pp. MR 9:596a
  • 30. A.M. Sinclair, Homomorphisms from ${C}_0({R})$, J. London Math. Soc. (2) 11 (1975), 165-174. MR 51:13689
  • 31. B. Solel and B. Ventura, Analyticity in triangular UHF algebras, J. Operator Theory 28 (1992), 357-370. MR 95i:46092
  • 32. B. Ventura, Strongly maximal triangular AF algebras, Internat. J. Math. 2 (1991), 567-598. MR 92k:46096

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 47D25, 46K50, 46H40

Retrieve articles in all journals with MSC (2000): 47D25, 46K50, 46H40


Additional Information

A. P. Donsig
Affiliation: Department of Mathematics and Statistics, University of Nebraska at Lincoln, Lincoln, Nebraska 68588-0323
Email: adonsig@math.unl.edu

T. D. Hudson
Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858–4353
Email: tdh@math.ecu.edu

E. G. Katsoulis
Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858–4353
Email: katsoulise@mail.ecu.edu

DOI: https://doi.org/10.1090/S0002-9947-00-02714-8
Received by editor(s): April 6, 1998
Received by editor(s) in revised form: October 7, 1999
Published electronically: November 17, 2000
Additional Notes: Research partially supported by an NSF grant
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society