Anick's spaces and the double loops of odd primary Moore spaces
Author:
Stephen D. Theriault
Journal:
Trans. Amer. Math. Soc. 353 (2001), 15511566
MSC (2000):
Primary 55P35; Secondary 55Q25
Published electronically:
October 11, 2000
MathSciNet review:
1709779
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Several properties of Anick's spaces are established which give a retraction of Anick's off if and . The proof is alternate to and more immediate than the two proofs of Neisendorfer's.
 [A]
David
Anick, Differential algebras in topology, Research Notes in
Mathematics, vol. 3, A K Peters, Ltd., Wellesley, MA, 1993. MR 1213682
(94h:55020)
 [AG]
David
Anick and Brayton
Gray, Small 𝐻 spaces related to Moore spaces, Topology
34 (1995), no. 4, 859–881. MR 1362790
(97a:55011), http://dx.doi.org/10.1016/00409383(95)000011
 [CM]
F.
R. Cohen and M.
E. Mahowald, A remark on the selfmaps of
Ω²𝑆²ⁿ⁺¹, Indiana Univ.
Math. J. 30 (1981), no. 4, 583–588. MR 620268
(82i:55013), http://dx.doi.org/10.1512/iumj.1981.30.30046
 [CMN1]
F.
R. Cohen, J.
C. Moore, and J.
A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2)
109 (1979), no. 1, 121–168. MR 519355
(80e:55024), http://dx.doi.org/10.2307/1971269
 [CMN2]
F.
R. Cohen, J.
C. Moore, and J.
A. Neisendorfer, The double suspension and exponents of the
homotopy groups of spheres, Ann. of Math. (2) 110
(1979), no. 3, 549–565. MR 554384
(81c:55021), http://dx.doi.org/10.2307/1971238
 [CMN3]
F.
R. Cohen, J.
C. Moore, and J.
A. Neisendorfer, Exponents in homotopy theory, Algebraic
topology and algebraic 𝐾theory (Princeton, N.J., 1983), Ann. of
Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987,
pp. 3–34. MR 921471
(89d:55035)
 [G1]
Brayton
Gray, Homotopy commutativity and the 𝐸𝐻𝑃
sequence, Algebraic topology (Evanston, IL, 1988) Contemp. Math.,
vol. 96, Amer. Math. Soc., Providence, RI, 1989,
pp. 181–188. MR 1022680
(90i:55025), http://dx.doi.org/10.1090/conm/096/1022680
 [G2]
Brayton
Gray, On the iterated suspension, Topology 27
(1988), no. 3, 301–310. MR 963632
(89h:55016), http://dx.doi.org/10.1016/00409383(88)900110
 [G3]
Brayton
Gray, 𝐸𝐻𝑃 spectra
and periodicity. I. Geometric constructions, Trans. Amer. Math. Soc. 340 (1993), no. 2, 595–616. MR 1152323
(94c:55015), http://dx.doi.org/10.1090/S0002994719931152323X
 [J]
I.
M. James, Reduced product spaces, Ann. of Math. (2)
62 (1955), 170–197. MR 0073181
(17,396b)
 [N1]
Joseph
Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc.
25 (1980), no. 232, iv+67. MR 567801
(81b:55035), http://dx.doi.org/10.1090/memo/0232
 [N2]
Joseph
Neisendorfer, Product decompositions of the double loops on odd
primary Moore spaces, Topology 38 (1999), no. 6,
1293–1311. MR 1690159
(2000d:55024), http://dx.doi.org/10.1016/S00409383(98)00055X
 [N3]
J. A. Neisendorfer, JamesHopf invariants, Anick's spaces, and the double loops on odd primary Moore spaces, Canad. Math. Bull. 43 (2000), 226235. CMP 2000:11
 [S1]
Paul
Selick, Odd primary torsion in
𝜋_{𝑘}(𝑆³), Topology 17
(1978), no. 4, 407–412. MR 516219
(80c:55010), http://dx.doi.org/10.1016/00409383(78)900071
 [S2]
Paul
Selick, A decomposition of
𝜋_{∗}(𝑆^{2𝑝+1};𝑍/𝑝𝑍),
Topology 20 (1981), no. 2, 175–177. MR 605656
(82c:55017), http://dx.doi.org/10.1016/00409383(81)900367
 [S3]
Paul
Selick, A reformulation of the Arf invariant one mod 𝑝
problem and applications to atomic spaces, Pacific J. Math.
108 (1983), no. 2, 431–450. MR 713746
(85d:55017)
 [T1]
S. D. Theriault, A reconstruction of Anick's fibration, to appear in Topology.
 [T2]
S. D. Theriault, Properties of Anick's spaces, to appear in Trans. Amer. Math. Soc. CMP 2000:01
 [A]
 D. Anick, Differential Algebras in Topology, AK Peters, (1993). MR 94h:55020
 [AG]
 D. Anick and B. Gray, Small spaces related to Moore spaces, Topology 34 (1995), 859881. MR 97a:55011
 [CM]
 F. R. Cohen, and M. E. Mahowald, A remark on the selfmaps of , Indiana Univ. Math. J. 30 (1981), 583588. MR 82i:55013
 [CMN1]
 F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Torsion in Homotopy Groups, Annals of Math. 109 (1979), 121168. MR 80e:55024
 [CMN2]
 F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Annals of Math. 110 (1979), 549565. MR 81c:55021
 [CMN3]
 F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Exponents in homotopy theory, Algebraic Topology and Algebraic theory, W. Browder, ed., Annals of Math. Study 113, Princeton University Press (1987), 334. MR 89d:55035
 [G1]
 B. Gray, Homotopy commutativity and the EHP sequence, Proc. Internat. Conf., 1988, Contemp.Math., Vol. 1370, Amer. Math. Soc., Providence, RI (1989), 181188. MR 90i:55025
 [G2]
 B. Gray, On the iterated suspension, Topology 27 (1988), 301310. MR 89h:55016
 [G3]
 B. Gray, EHP spectra and periodicity. I: Geometric constructions, Trans. Amer. Math. Soc. 340, No. 2 (1993), 595616. MR 94c:55015
 [J]
 I. M. James, Reduced product spaces, Annals of Math. 62 (1955), 170197. MR 17:396b
 [N1]
 J. A. Neisendorfer, Primary Homotopy Theory, Memoirs of the Amer. Math. Soc. No. 232 (1980). MR 81b:55035
 [N2]
 J. A. Neisendorfer, Product decompositions of the double loops on odd primary Moore spaces, Topology 38 (1999), 12931311. MR 2000d:55024
 [N3]
 J. A. Neisendorfer, JamesHopf invariants, Anick's spaces, and the double loops on odd primary Moore spaces, Canad. Math. Bull. 43 (2000), 226235. CMP 2000:11
 [S1]
 P. Selick, Odd primary torsion in , Topology 17 (1978), 407412. MR 80c:55010
 [S2]
 P. Selick, A decomposition of , Topology 20 (1981), 175177. MR 82c:55017
 [S3]
 P. Selick, A reformulation of the Arf invariant one problem and applications to atomic spaces, Pacific J. Math. 108 (1983), 431450. MR 85d:55017
 [T1]
 S. D. Theriault, A reconstruction of Anick's fibration, to appear in Topology.
 [T2]
 S. D. Theriault, Properties of Anick's spaces, to appear in Trans. Amer. Math. Soc. CMP 2000:01
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
55P35,
55Q25
Retrieve articles in all journals
with MSC (2000):
55P35,
55Q25
Additional Information
Stephen D. Theriault
Affiliation:
Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60607
Address at time of publication:
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
Email:
st7b@virginia.edu
DOI:
http://dx.doi.org/10.1090/S0002994700026222
PII:
S 00029947(00)026222
Keywords:
Loop space decomposition,
Hopf invariant
Received by editor(s):
December 1, 1998
Published electronically:
October 11, 2000
Additional Notes:
The author was supported in part by an NSERC Postdoctoral Fellowship
Article copyright:
© Copyright 2000
American Mathematical Society
