Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A similarity principle for complex vector fields and applications


Authors: S. Berhanu, J. Hounie and P. Santiago
Journal: Trans. Amer. Math. Soc. 353 (2001), 1661-1675
MSC (1991): Primary 35F05, 35N10, 35A05; Secondary 35F20, 32F40
Published electronically: November 29, 2000
MathSciNet review: 1806725
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

This paper establishes a similarity principle for a class of non-elliptic, smooth complex vector fields in the plane. This principle is used to prove a uniqueness result for a nonlinear Cauchy problem.


References [Enhancements On Off] (What's this?)

  • 1. J. Alvarez and J. Hounie, Estimates for the kernel and continuity properties of pseudo-differential operators. Arkiv för Mat. 28 (1990), 1-22.
  • 2. Lipman Bers, An outline of the theory of pseudoanalytic functions, Bull. Amer. Math. Soc. 62 (1956), 291–331. MR 0081936, 10.1090/S0002-9904-1956-10037-2
  • 3. Lipman Bers, Theory of pseudo-analytic functions, Institute for Mathematics and Mechanics, New York University, New York, 1953. MR 0057347
  • 4. L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, Edizioni Cremonese, Roma, 1955, pp. 111–140. MR 0076981
  • 5. David L. Colton, Analytic theory of partial differential equations, Monographs and Studies in Mathematics, vol. 8, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 614751
  • 6. David Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), no. 1, 27–42. MR 523600
  • 7. Jorge Hounie, Global Cauchy problems modulo flat functions, Adv. in Math. 51 (1984), no. 3, 240–252. MR 740584, 10.1016/0001-8708(84)90009-4
  • 8. Jorge Hounie and Eduardo Perdigão de Lemos, Local solvability in 𝐿^{𝑝} of first-order linear operators, J. Math. Anal. Appl. 197 (1996), no. 1, 42–53. MR 1371274, 10.1006/jmaa.1996.0005
  • 9. A. Meziani, On the similarity principle for planar vector fields. Application to Second Order PDE. J. Diff. Equations 157 (1999), 1-19. CMP 2000:01
  • 10. L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math. 16 (1963), 331–351. MR 0163045
  • 11. Heinrich Renelt, Elliptic systems and quasiconformal mappings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1988. Translated from the German; A Wiley-Interscience Publication. MR 1008247
  • 12. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • 13. Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
  • 14. Elias M. Stein and Guido Weiss, On the theory of harmonic functions of several variables. I. The theory of 𝐻^{𝑝}-spaces, Acta Math. 103 (1960), 25–62. MR 0121579
  • 15. François Trèves, Hypo-analytic structures, Princeton Mathematical Series, vol. 40, Princeton University Press, Princeton, NJ, 1992. Local theory. MR 1200459
  • 16. I. N. Vekua, Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. MR 0150320

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35F05, 35N10, 35A05, 35F20, 32F40

Retrieve articles in all journals with MSC (1991): 35F05, 35N10, 35A05, 35F20, 32F40


Additional Information

S. Berhanu
Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122-6094
Email: berhanu@euclid.math.temple.edu

J. Hounie
Affiliation: Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, CEP 13.565-905, São Carlos, SP, Brasil
Email: hounie@dm.ufscar.br

P. Santiago
Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122-6094
Address at time of publication: Departamento de Matemática, Universidade Federal de Pernambuco, CEP 50.740-540, Recife, PE, Brasil
Email: santiago@dmat.ufpe.br

DOI: http://dx.doi.org/10.1090/S0002-9947-00-02673-8
Keywords: Similarity principle, locally solvable vector field
Received by editor(s): October 14, 1998
Received by editor(s) in revised form: October 25, 1999
Published electronically: November 29, 2000
Additional Notes: The first author thanks IMPA of Brazil for an invitation to a pde workshop in July, 1997, that facilitated this work
The second author was partially supported by CNPq, FAPESP and FINEP
The third author was supported partially supported by CNPq
Article copyright: © Copyright 2000 American Mathematical Society