A characteristic free approach to Brauer algebras

Authors:
Steffen König and Changchang Xi

Journal:
Trans. Amer. Math. Soc. **353** (2001), 1489-1505

MSC (1991):
Primary 16D25, 16G30, 20G0; Secondary 57M25, 81R05

Published electronically:
December 18, 2000

MathSciNet review:
1806731

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Brauer algebras arise in representation theory of orthogonal or symplectic groups. These algebras are shown to be iterated inflations of group algebras of symmetric groups. In particular, they are cellular (as had been shown before by Graham and Lehrer). This gives some information about block decomposition of Brauer algebras.

**[Alp]**J. L. Alperin,*Local representation theory*, Cambridge Studies in Advanced Mathematics, vol. 11, Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups. MR**860771****[Br]**R.BRAUER, On algebras which are connected with the semisimple continous groups. Annals of Math. 38, 854-872 (1937).**[Brow1]**W. P. Brown,*Generalized matrix algebras*, Canad. J. Math.**7**(1955), 188–190. MR**0067868****[Brow2]**William P. Brown,*The semisimplicity of 𝜔_{𝑓}ⁿ*, Ann. of Math. (2)**63**(1956), 324–335. MR**0075931****[Brow3]**Wm. P. Brown,*An algebra related to the orthogonal group*, Michigan Math. J.**3**(1955), 1–22. MR**0072122****[GHJ]**Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones,*Coxeter graphs and towers of algebras*, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR**999799****[GL]**J. J. Graham and G. I. Lehrer,*Cellular algebras*, Invent. Math.**123**(1996), no. 1, 1–34. MR**1376244**, 10.1007/BF01232365**[HW1]**Phil Hanlon and David Wales,*On the decomposition of Brauer’s centralizer algebras*, J. Algebra**121**(1989), no. 2, 409–445. MR**992775**, 10.1016/0021-8693(89)90076-8**[HW2]**Phil Hanlon and David Wales,*Eigenvalues connected with Brauer’s centralizer algebras*, J. Algebra**121**(1989), no. 2, 446–476. MR**992776**, 10.1016/0021-8693(89)90077-X**[HW3]**Phil Hanlon and David Wales,*A tower construction for the radical in Brauer’s centralizer algebras*, J. Algebra**164**(1994), no. 3, 773–830. MR**1272114**, 10.1006/jabr.1994.1089**[J]**G. D. James,*The representation theory of the symmetric groups*, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR**513828****[JK]**Gordon James and Adalbert Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR**644144****[Ker]**S. V. Kerov,*Realizations of representations of the Brauer semigroup*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**164**(1987), no. Differentsialnaya Geom. Gruppy Li i Mekh. IX, 188–193, 199 (Russian, with English summary); English transl., J. Soviet Math.**47**(1989), no. 2, 2503–2507. MR**947338**, 10.1007/BF01840432**[K1]**S.K¨ONIG, Cyclotomic Schur algebras and blocks of cyclic defect, Canad. Math. Bull. 43, 79-86 (2000). CMP**2000:10****[KX1]**Steffen König and Changchang Xi,*On the structure of cellular algebras*, Algebras and modules, II (Geiranger, 1996) CMS Conf. Proc., vol. 24, Amer. Math. Soc., Providence, RI, 1998, pp. 365–386. MR**1648638****[KX2]**S.K¨ONIG AND C.C.XI, Cellular algebras: inflations and Morita equivalences. Journal London Math. Soc. 60, 700-722 (1999). CMP**2000:11****[Ram]**Arun Ram,*Characters of Brauer’s centralizer algebras*, Pacific J. Math.**169**(1995), no. 1, 173–200. MR**1346252****[We1]**Hans Wenzl,*On the structure of Brauer’s centralizer algebras*, Ann. of Math. (2)**128**(1988), no. 1, 173–193. MR**951511**, 10.2307/1971466**[We2]**Hans Wenzl,*Quantum groups and subfactors of type 𝐵, 𝐶, and 𝐷*, Comm. Math. Phys.**133**(1990), no. 2, 383–432. MR**1090432**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
16D25,
16G30,
20G0,
57M25,
81R05

Retrieve articles in all journals with MSC (1991): 16D25, 16G30, 20G0, 57M25, 81R05

Additional Information

**Steffen König**

Affiliation:
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

Address at time of publication:
Department of Mathematics and Computer Science, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom

Email:
sck5@mcs.le.ac.ak

**Changchang Xi**

Affiliation:
Department of Mathematics, Beijing Normal University, 100875 Beijing, People’s Republic of China

Email:
xicc@bnu.edu.cn

DOI:
https://doi.org/10.1090/S0002-9947-00-02724-0

Keywords:
Brauer algebras,
orthogonal groups,
symplectic groups,
cellular algebras

Received by editor(s):
January 26, 1998

Received by editor(s) in revised form:
January 13, 2000

Published electronically:
December 18, 2000

Additional Notes:
Both authors have obtained support from the Volkswagen Foundation (Research in Pairs Programme of the Mathematical Research Institute Oberwolfach). S. König also obtained support from Beijing Normal University during his stay in Beijing in May 1997, when most of this paper has been written. C. C. Xi also obtained support from the Young Teacher Foundation of Chinese Educational Committee and from NSF of China (Grant No. 19831070).

Article copyright:
© Copyright 2000
American Mathematical Society