Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On Littlewood's boundedness problem for sublinear Duffing equations

Author: Bin Liu
Journal: Trans. Amer. Math. Soc. 353 (2001), 1567-1585
MSC (1991): Primary 34C15, 58F27
Published electronically: December 18, 2000
MathSciNet review: 1806727
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


In this paper, we are concerned with the boundedness of all the solutions and the existence of quasi-periodic solutions for second order differential equations

\begin{displaymath}x^{\prime\prime} + g(x) = e(t), \end{displaymath}

where the 1-periodic function $e(t)$ is a smooth function and $g(x)$satisfies sublinearity:

\begin{displaymath}{sign}(x)\cdot g(x)\to+\infty,\quad g(x)/x\to 0 \quad {as}\,\,\, \vert x\vert\to+\infty. \end{displaymath}

References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR 0690288
  • 2. R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the twist-theorem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 1, 79–95. MR 937537
  • 3. Tassilo Küpper and Jiangong You, Existence of quasiperiodic solutions and Littlewood’s boundedness problem of Duffing equations with subquadratic potentials, Nonlinear Anal. 35 (1999), no. 5, Ser. A: Theory Methods, 549–559. MR 1657065, 10.1016/S0362-546X(97)00709-8
  • 4. Stephane Laederich and Mark Levi, Invariant curves and time-dependent potentials, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 365–378. MR 1116646, 10.1017/S0143385700006192
  • 5. Mark Levi, Quasiperiodic motions in superquadratic time-periodic potentials, Comm. Math. Phys. 143 (1991), no. 1, 43–83. MR 1139424
  • 6. John E. Littlewood, Some problems in real and complex analysis, D. C. Heath and Co. Raytheon Education Co., Lexington, Mass., 1968. MR 0244463
  • 7. Bin Liu, Boundedness for solutions of nonlinear Hill’s equations with periodic forcing terms via Moser’s twist theorem, J. Differential Equations 79 (1989), no. 2, 304–315. MR 1000692, 10.1016/0022-0396(89)90105-8
  • 8. B.Liu and F.Zanolin, Boundedness of solutions for second order quasilinear ODEs, preprint.
  • 9. L. Markus, Lectures in differentiable dynamics, American Mathematical Society, Providence, R.I., 1971. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 3. MR 0309152
  • 10. John N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology 21 (1982), no. 4, 457–467. MR 670747, 10.1016/0040-9383(82)90023-4
  • 11. G. R. Morris, A case of boundedness in Littlewood’s problem on oscillatory differential equations, Bull. Austral. Math. Soc. 14 (1976), no. 1, 71–93. MR 0402198
  • 12. Jürgen Moser, Stable and random motions in dynamical systems, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J; Annals of Mathematics Studies, No. 77. MR 0442980
  • 13. J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20. MR 0147741
  • 14. Ming Liang Pei, Aubry-Mather sets for finite-twist maps of a cylinder and semilinear Duffing equations, J. Differential Equations 113 (1994), no. 1, 106–127. MR 1296163, 10.1006/jdeq.1994.1116
  • 15. Helmut Rüssmann, On the existence of invariant curves of twist mappings of an annulus, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 677–718. MR 730294, 10.1007/BFb0061441
  • 16. Jian Gong You, Boundedness for solutions of superlinear Duffing equations via the twist theorem, Sci. China Ser. A 35 (1992), no. 4, 399–412. MR 1183719

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34C15, 58F27

Retrieve articles in all journals with MSC (1991): 34C15, 58F27

Additional Information

Bin Liu
Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, P.R.China

Keywords: Boundedness of solutions, quasi-periodic solutions, Moser's small twist theorem
Received by editor(s): January 16, 1997
Published electronically: December 18, 2000
Additional Notes: Supported by NNSF of China
Article copyright: © Copyright 2000 American Mathematical Society