Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Vessiot structure for manifolds of $(p,q)$-hyperbolic type: Darboux integrability and symmetry
HTML articles powered by AMS MathViewer

by Peter J. Vassiliou PDF
Trans. Amer. Math. Soc. 353 (2001), 1705-1739 Request permission

Abstract:

It is well known that if a scalar second order hyperbolic partial differential equation in two independent variables is Darboux integrable, then its local Cauchy problem may be solved by ordinary differential equations. In addition, such an equation has infinitely many non-trivial conservation laws. Moreover, Darboux integrable equations have properties in common with infinite dimensional completely integrable systems.

In this paper we employ a geometric object intrinsically associated with any hyperbolic partial differential equation, its hyperbolic structure, to study the Darboux integrability of the class $E$ of semilinear second order hyperbolic partial differential equations in one dependent and two independent variables. It is shown that the problem of classifying the Darboux integrable equations in $E$ contains, as a subproblem, that of classifying the manifolds of $(p,q)$-hyperbolic type of rank 4 and dimension $2k+3$, $k\ge 2$; $p=2,q\ge 2$.

In turn, it is shown that the problem of classifying these manifolds in the two (lowest) cases $(p,q)=(2,2),(2,3)$ contains, as a subproblem, the classification problem for Lie groups. This generalizes classical results of E. Vessiot.

The main result is that if an equation in $E$ is (2,2)- or (2,3)-Darboux integrable on the $k$-jets, $k\ge 2$, then its intrinsic hyperbolic structure admits a Lie group of symmetries of dimension $2k-1$ or $2k-2$, respectively. It follows that part of the moduli space for the Darboux integrable equations in $E$ is determined by isomorphism classes of Lie groups.

The Lie group in question is the group of automorphisms of the characteristic systems of the given equation which leaves invariant the foliation induced by the characteristic (or, Riemann) invariants of the equation, the tangential characteristic symmetries. The isomorphism class of the tangential characteristic symmetries is a contact invariant of the corresponding Darboux integrable partial differential equation.

References
  • Ian M. Anderson and Niky Kamran, The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane, Duke Math. J. 87 (1997), no. 2, 265–319. MR 1443529, DOI 10.1215/S0012-7094-97-08711-1
  • Ian M. Anderson, Niky Kamran, and Peter J. Olver, Internal, external, and generalized symmetries, Adv. Math. 100 (1993), no. 1, 53–100. MR 1224527, DOI 10.1006/aima.1993.1029
  • Robert L. Bryant, An introduction to Lie groups and symplectic geometry, Geometry and quantum field theory (Park City, UT, 1991) IAS/Park City Math. Ser., vol. 1, Amer. Math. Soc., Providence, RI, 1995, pp. 5–181. MR 1338391, DOI 10.1090/pcms/001/02
  • Robert L. Bryant and Lucas Hsu, Rigidity of integral curves of rank $2$ distributions, Invent. Math. 114 (1993), no. 2, 435–461. MR 1240644, DOI 10.1007/BF01232676
  • J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
  • R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior differential systems, Mathematical Sciences Research Institute Publications, vol. 18, Springer-Verlag, New York, 1991. MR 1083148, DOI 10.1007/978-1-4613-9714-4
  • É. Cartan, Les systèmes de Pfaff á cinq variables et les Ă©quations aux dĂ©rivĂ©es partielles du seconde ordre, Ann. Sci. École Norm. (3) 27 (1910), 109–192.
  • R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. (Vol. II by R. Courant.). MR 0140802
  • Robert B. Gardner, A differential geometric generalization of characteristics, Comm. Pure Appl. Math. 22 (1969), 597–626. MR 255958, DOI 10.1002/cpa.3160220504
  • R. B. Gardner and N. Kamran, Characteristics and the geometry of hyperbolic equations in the plane, J. Differential Equations 104 (1993), no. 1, 60–116. MR 1224122, DOI 10.1006/jdeq.1993.1064
  • E. Goursat, Leçons sur l’intĂ©gration des Ă©quations aux dĂ©rivĂ©es partielles du second order á deux variables indĂ©pendent, Tome 1, Hermann, Paris, 1896.
  • E. Goursat, Recherches sur quelques Ă©quation aux dĂ©rivĂ©es partielles du second ordre, Ann. Fac. Toulouse $2^e$ serie (1899), 31–68, 439–464.
  • L. Hsu and N. Kamran, Classification of second-order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries, Proc. London Math. Soc. (3) 58 (1989), no. 2, 387–416. MR 977483, DOI 10.1112/plms/s3-58.2.387
  • Martin Juráš and Ian M. Anderson, Generalized Laplace invariants and the method of Darboux, Duke Math. J. 89 (1997), no. 2, 351–375. MR 1460626, DOI 10.1215/S0012-7094-97-08916-X
  • Niky Kamran, Contributions to the study of the equivalence problem of Élie Cartan and its applications to partial and ordinary differential equations, Acad. Roy. Belg. Cl. Sci. MĂ©m. Collect. 8$^\textrm {o}$ (2) 45 (1989), no. 7, 122 (English, with French summary). MR 1103404
  • I. S. Krasil’shchik and A. M. Vinogradov (Eds.), Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Translations of Mathematical Monographs, Vol. 182, Amer. Math. Soc. 1999.
  • S. Lie, Diskussion der differential gleichung $s=F(z)$, Archiv. fĂĽr Math. Bd. VI Heft 2 (1881), 112–124.
  • Alan C. Newell, Solitons in mathematics and physics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. MR 847245, DOI 10.1137/1.9781611970227
  • Richard S. Palais, The symmetries of solitons, Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 4, 339–403. MR 1462745, DOI 10.1090/S0273-0979-97-00732-5
  • R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997. Cartan’s generalization of Klein’s Erlangen program; With a foreword by S. S. Chern. MR 1453120
  • P. J. Vassiliou, Equivalence of vector field systems, Bull. Austral. Math. Soc. 42 (2) (1990), 215—229.
  • P. J. Vassiliou, On some geometry associated with a generalised Toda lattice, Bull. Austral. Math. Soc. 49 (1994), no. 3, 439–462. MR 1274524, DOI 10.1017/S0004972700016555
  • P. J. Vassiliou, Intrinsic geometry of systems of first order partial differential equations, School of Mathematics and Statistics, University of Canberra, 1999, preprint.
  • E. Vessiot, Sur une thĂ©orie nouvelles des problèmes gĂ©nĂ©raux d’intĂ©gration, Bull. Soc. Math. Fr. 52 (1924), 336–395.
  • E. Vessiot, Sur les faisceaux de transformations infinitĂ©simales associĂ©es aux Ă©quations aux dĂ©rivĂ©es partielles du second ordre, $F(x,y,z,p,q,r,s,t)=0$, J. Math. Pures Appl. 25 (1936), 301–320.
  • E. Vessiot, Sur les Ă©quations aux dĂ©rivĂ©es partielles du second ordre, $F(x,y,z,p,q,r,s,t) =0$, intĂ©grables par la methode de Darboux, J. Math. Pure Appl. 18 (9), 1–61.
  • Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
Similar Articles
Additional Information
  • Peter J. Vassiliou
  • Affiliation: School of Mathematics and Statistics, University of Canberra, Canberra ACT, Australia, 2601
  • Email: pierre@ise.canberra.edu.au
  • Received by editor(s): November 17, 1998
  • Received by editor(s) in revised form: December 16, 1999
  • Published electronically: December 18, 2000
  • © Copyright 2000 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 353 (2001), 1705-1739
  • MSC (2000): Primary 58D27, 58J45, 58J70; Secondary 35L70
  • DOI: https://doi.org/10.1090/S0002-9947-00-02670-2
  • MathSciNet review: 1813593