Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spaces of rational loops on a real projective space


Author: Jacob Mostovoy
Journal: Trans. Amer. Math. Soc. 353 (2001), 1959-1970
MSC (2000): Primary 26C15, 55P35
DOI: https://doi.org/10.1090/S0002-9947-01-02644-7
Published electronically: January 3, 2001
MathSciNet review: 1813601
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We show that the loop spaces on real projective spaces are topologically approximated by the spaces of rational maps $\mathbf{RP}^{1}\rightarrow \mathbf{RP}^{n}$. As a byproduct of our constructions we obtain an interpretation of the Kronecker characteristic (degree) of an ornament via particle spaces.


References [Enhancements On Off] (What's this?)

  • 1. C. Boyer, J. Hurtubise, B. M. Mann - R. J. Milgram, The topology of the space of rational maps into generalized flag manifolds. Acta Math. 173 (1994), 61-101. MR 95h:55007
  • 2. C. Boyer, J. Hurtubise - R. J. Milgram, Stability theorems for spaces of rational curves. Preprint, 1999, math.AG/9903099
  • 3. R. W. Brockett, Some geometric questions in the theory of linear systems. IEEE Trans. Automat. Control 21 (1976), 449-455. MR 57:9177b
  • 4. M. A. Guest, The topology of the space of rational curves on a toric variety. Acta Math. 174 (1995), 119-145. MR 95k:58021
  • 5. M. A. Guest, A. Kozlowski - K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity. Fund. Math. 161 (1999), 93-117.
  • 6. M. Hirsch, Differential Topology. Springer-Verlag, 1976. MR 56:6669
  • 7. L. Kronecker, Über Systeme von Funktionen mehrerer Variabeln. Monatsberichte Berl. Acad. (1869), 159-193 and 688-698.
  • 8. A. Kozlowski - K. Yamaguchi, Topology of complements of discriminants and resultants. J. Math. Soc. Japan 52 (2000), 949-959. CMP 2000:16
  • 9. S. Lefschetz, Topology. AMS Colloquium Publications, New York, 1930.
  • 10. D. McDuff, Configuration spaces of positive and negative particles. Topology, 14 (1975), 91-107. MR 50:11225
  • 11. J. Milnor, Morse Theory, revised edition. Princeton, 1969. MR 29:634
  • 12. G. Segal, The topology of spaces of rational functions. Acta Math. 143 (1979), 39-72. MR 81c:55013
  • 13. V. A. Vassiliev, Invariants of ornaments in: Singularities and bifurcations. Adv. Soviet Math. vol. 21, Amer. Math. Soc., Providence, RI, 1994, pp. 225-262. MR 96a:57029
  • 14. V. A. Vassiliev, Topology of discriminants and their complements. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) 209-226, Birkhäuser, Basel, 1995. MR 97j:57041
  • 15. V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, revised edition. Translations of Math. Monographs 98. Amer. Math. Soc., Providence, RI, 1994. MR 94i:57020
  • 16. K. Yamaguchi, Complements of resultants and homotopy types, J. Math. Kyoto Univ. 39 (1999), 675-684. CMP 2000:08

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 26C15, 55P35

Retrieve articles in all journals with MSC (2000): 26C15, 55P35


Additional Information

Jacob Mostovoy
Affiliation: Instituto de Matemáticas (Unidad Cuernavaca), Universidad Nacional Autónoma de México, A.P. 273-3, C.P. 62251, Cuernavaca, Morelos, México
Email: jacob@matcuer.unam.mx

DOI: https://doi.org/10.1090/S0002-9947-01-02644-7
Keywords: Loop space, rational map, ornament, Kronecker characteristic
Received by editor(s): June 2, 1998
Received by editor(s) in revised form: October 18, 1999
Published electronically: January 3, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society