Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Primes in short arithmetic progressions with rapidly increasing differences


Author: P. D. T. A. Elliott
Journal: Trans. Amer. Math. Soc. 353 (2001), 2705-2724
MSC (2000): Primary 11N13; Secondary 11B25
Published electronically: March 12, 2001
MathSciNet review: 1828469
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

Primes are, on average, well distributed in short segments of arithmetic progressions, even if the associated moduli grow rapidly.


References [Enhancements On Off] (What's this?)

  • 1. M. B. Barban, Multiplicative functionas of ^{Σ}𝑅-equidistributed sequences, Izv. Akad. Nauk UzSSR Ser. Fiz.–Mat. Nauk 1964 (1964), no. 6, 13–19 (Russian, with Uzbek summary). MR 0176971
  • 2. M. B. Barban, The “large sieve” method and its application to number theory, Uspehi Mat. Nauk 21 (1966), no. 1, 51–102 (Russian). MR 0199171
  • 3. E. Bombieri, On the large sieve, Mathematika 12 (1965), 201–225. MR 0197425
  • 4. P. D. T. A. Elliott, Probabilistic number theory. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 239, Springer-Verlag, New York-Berlin, 1979. Mean-value theorems. MR 551361
  • 5. Elliott, P.D.T.A. Primes, products and polynomials, preprint, to appear.
  • 6. P. Erdös, On the sum ∑^{𝑥}_{𝑘=1}𝑑(𝑓(𝑘)), J. London Math. Soc. 27 (1952), 7–15. MR 0044565
  • 7. J. B. Friedlander and H. Iwaniec, The divisor problem for arithmetic progressions, Acta Arith. 45 (1985), no. 3, 273–277. MR 808026
  • 8. P. X. Gallagher, A large sieve density estimate near 𝜎=1, Invent. Math. 11 (1970), 329–339. MR 0279049
  • 9. Heath-Brown, R. Sieve identities and gaps between primes, Journées Arithmétiques, Metz, 1981, Astérisque 94, Soc. Math. de France (1982), 61-65.
  • 10. Yu. V. Linnik, All large numbers are sums of a prime and two squares (A problem of Hardy and Littlewood). I, Mat. Sb. (N.S.) 52 (94) (1960), 661–700 (Russian). MR 0120206
  • 11. Ju. V. Linnik, Dispersionnyi metod v binarnykh additivnykh zadachakh, Izdat. Leningrad. Univ., Leningrad, 1961 (Russian). MR 0140500
    Ju. V. Linnik, The dispersion method in binary additive problems, Translated by S. Schuur, American Mathematical Society, Providence, R.I., 1963. MR 0168543
  • 12. Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847
  • 13. Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0087685
  • 14. R. V. Uždavinis, On the joint distribution of values of additive arithmetic functions of integral polynomials, Trudy Akad. Nauk Litov. SSR Ser. B 1960 (1960), no. 1 (21), 5–29 (Russian, with Lithuanian summary). MR 0142531
  • 15. R. C. Vaughan, An elementary method in prime number theory, Acta Arith. 37 (1980), 111–115. MR 598869
  • 16. J. G. van der Corput, Une inégalité relative au nombre des diviseurs, Nederl. Akad. Wetensch., Proc. 42 (1939), 547–553 (French). MR 0000249
  • 17. Dieter Wolke, Multiplikative Funktionen auf schnell wachsenden Folgen, J. Reine Angew. Math. 251 (1971), 54–67 (German). MR 0289439
  • 18. Dieter Wolke, A new proof of a theorem of van der Corput, J. London Math. Soc. (2) 5 (1972), 609–612. MR 0314786

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11N13, 11B25

Retrieve articles in all journals with MSC (2000): 11N13, 11B25


Additional Information

P. D. T. A. Elliott
Affiliation: Department of Mathematics, University of Colorado Boulder, Boulder, Colorado 80309–0395
Email: pdtae@euclid.colorado.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-01-02692-7
Received by editor(s): January 7, 1999
Received by editor(s) in revised form: February 26, 2000
Published electronically: March 12, 2001
Additional Notes: Partially supported by NSF contract DMS-9530690
Article copyright: © Copyright 2001 American Mathematical Society