Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Galois groups of some vectorial polynomials


Authors: Shreeram S. Abhyankar and Nicholas F. J. Inglis
Journal: Trans. Amer. Math. Soc. 353 (2001), 2941-2969
MSC (2000): Primary 12F10, 14H30, 20D06, 20E22
DOI: https://doi.org/10.1090/S0002-9947-01-02744-1
Published electronically: January 29, 2001
MathSciNet review: 1828480
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Previously nice vectorial equations were constructed having various finite classical groups as Galois groups. Here such equations are constructed for the remaining classical groups. The previous equations were genus zero equations. The present equations are strong genus zero.


References [Enhancements On Off] (What's this?)

  • [Ab1] S. S. Abhyankar, Coverings of algebraic curves, American Journal of Mathematics 79 (1957), 825-856. MR 20:872
  • [Ab2] S. S. Abhyankar, Galois theory on the line in nonzero characteristic, Bulletin of the American Mathematical Society 27 (1992), 68-133. MR 94a:12004
  • [Ab3] S. S. Abhyankar, Nice equations for nice groups, Israel Journal of Mathematics 88 (1994), 1-23. MR 96f:12003
  • [Ab4] S. S. Abhyankar, Again nice equations for nice groups, Proceedings of the American Mathematical Society 124 (1996), 2967-2976. MR 96m:12004
  • [Ab5] S. S. Abhyankar, More nice equations for nice groups, Proceedings of the American Mathematical Society 124 (1996), 2977-2991. MR 96m:12005
  • [Ab6] S. S. Abhyankar, Further nice equations for nice groups, Transactions of the American Mathematical Society 348 (1996), 1555-1577. MR 96m:14021
  • [Ab7] S. S. Abhyankar, Factorizations over finite fields, Finite Fields and Applications, London Mathematical Society Lecture Notes Series 233 (1996), 1-21. MR 98c:11130
  • [Ab8] S. S. Abhyankar, Projective polynomials, Proceedings of the American Mathematical Society 125 (1997), 1643-1650. MR 98a:12001
  • [Ab9] S. S. Abhyankar, Galois theory of semilinear transformations, Aspects of Galois Theory, London Mathematical Society Lecture Notes Series 256 (1999), 1-37. MR 2000j:12008
  • [AL1] S. S. Abhyankar and P. A. Loomis, Once more nice equation for nice groups, Proceedings of the American Mathematical Society 126 (1998), 1885-1896. MR 98k:12003
  • [AL2] S. S. Abhyankar and P. A. Loomis, Twice more nice equations for nice groups, Contemp. Math., 256, Amer. Math. Soc., 1999, 63-76. CMP 2000:09
  • [CKa] P. J. Cameron and W. M. Kantor, 2-Transitive and antiflag transitive collineation groups of finite projective spaces, Journal of Algebra 60 (1979), 384-422. MR 81c:20032
  • [GSa] R. M. Guralnick and J. Saxl, Monodromy groups of polynomials, Groups of Lie Type and Their Geometries (W. M. Kantor and L. Di Martino, eds.), Cambridge University Press (1995), 125-150. MR 96b:20003
  • [Har] D. Harbater, Abhyankar's conjecture on Galois groups over curves, Inventiones Mathematicae 117 (1994), 1-25. MR 95i:14029
  • [In1] N. F. J. Inglis, Linear characters of finite linear groups, Journal of Algebra 214 (1999), 545-552. MR 2000c:20065
  • [In2] N. F. J. Inglis, Symplectic groups as Galois groups, Journal of Algebra, 227 (2000), 499-503. CMP 2000:13
  • [Kan] W. M. Kantor, Rank 3 characterizations of classical geometries, Journal of Algebra 36 (1975), 309-313. MR 52:8229
  • [KLi] P. B. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups, Cambridge University Press, 1990. MR 91g:20001
  • [Li1] M. W. Liebeck, The affine permutation groups of rank three, Proceedings of the London Mathematical Society 54 (1987), 477-516. MR 88m:20004
  • [Li2] M. W. Liebeck, Characterization of classical groups by orbit sizes on the natural module, Proceedings of the American Mathematical Society 124 (1996), 2961-2966. MR 97e:20068
  • [Ray] M. Raynaud, Revêtment de la droit affine en charactéristic $p > 0$ et conjecture d'Abhyankar, Inventiones Mathematicae 116 (1994), 425-462. MR 94m:14034
  • [Tay] D. E. Taylor, The Geometry of the Classical Groups, Heldermann Verlag, Berlin, 1992. MR 94d:20028

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 12F10, 14H30, 20D06, 20E22

Retrieve articles in all journals with MSC (2000): 12F10, 14H30, 20D06, 20E22


Additional Information

Shreeram S. Abhyankar
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: ram@cs.purdue.edu

Nicholas F. J. Inglis
Affiliation: Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box 36, Al-Khod, Postal Code 123, Sultanate of Oman
Email: ninglis@squ.edu.om

DOI: https://doi.org/10.1090/S0002-9947-01-02744-1
Received by editor(s): March 22, 2000
Published electronically: January 29, 2001
Additional Notes: Abhyankar’s work was partly supported by NSF Grant DMS 97-32592 and NSA grant MDA 904-99-1-0019
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society