Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sur le rang du $2$-groupe de classes de $Q({\sqrt{m}},{\sqrt{d}})$$m=2$ ou un premier $p\equiv 1\,(mod\,4)$


Authors: Abdelmalek Azizi and Ali Mouhib
Journal: Trans. Amer. Math. Soc. 353 (2001), 2741-2752
MSC (2000): Primary 11R16, 11R29, 11R37
DOI: https://doi.org/10.1090/S0002-9947-01-02753-2
Published electronically: February 7, 2001
MathSciNet review: 1828471
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

On the rank of the $2$-class group of $Q({\sqrt{m}},{\sqrt{d}})$. Let $d$ be a square-free positive integer and $p$ be a prime such that $p\equiv 1\,(mod\, 4)$. We set $K = Q({\sqrt{m}},{\sqrt{d}})$, where $m=2$ or $m=p$. In this paper, we determine the rank of the $2$-class group of $K$.

RÉSUMÉ. Soit $K = Q({\sqrt{m}},{\sqrt{d}})$, un corps biquadratique où $m=2$ ou bien un premier $p\equiv 1\,(mod\,4)$ et $d$ étant un entier positif sans facteurs carrés. Dans ce papier, on détermine le rang du $2$-groupe de classes de $K$.


References [Enhancements On Off] (What's this?)

  • [Az-93] A. Azizi, Capitulation des 2-classes d'idéaux de $Q(\sqrt d;i)$. Thèse. Univ. Laval. Québec. (1993).
  • [Be-Le-Sn-96] E. Benjamin, F. Lemmermeyer, C. Snyder, Real quadratic fields with abelien 2-class field tower. Research institute of mathematics, Orono, January, 1996.
  • [Be-97] I. Benhamza, Unités des corps $Q(\sqrt{d_{1}}, \sqrt{d_{2}},\sqrt{-d})$ et application au problème de capitulation sur le corps $Q(\sqrt{d},\sqrt{-2})$. Thèse. Université Mohamed I. Oujda. (1997).
  • [Gr-73] G. Gras, Sur les l-classes d'idéaux dans les extensions cycliques relatives de degré premier l. Ann. Inst. Fourier, Grenoble, tome 23, (1973). MR 50:12967
  • [Ja-73] G. J. Janusz, Algebraic number fields. Academic press, New York-London. (1973). MR 51:3110
  • [Ka-73] P. Kaplan, Divisibilité par 8 du nombre de classes des corps quadratiques dont le 2-groupe des classes est cyclique et réciprocité biquadratique. J. Math. Soc. Japan. vol 25, No 4. (1973). MR 48:2113
  • [Ka-76] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine. Angew. Math. 283/284. (1976). 313-363. MR 53:2896
  • [Ki-76] H. Kisilevsky, Number fields with class number congruent to 4 modulo 8 and Hilbert's theorem 94. J. Number Theory 8, (1976). 271-279. MR 54:5188
  • [Kub-56] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J, 10 (1956), 65-85. MR 18:643e
  • [Kuc-95] R. Kucera, On the parity of the class number of a biquadratic field. J. Number Theory 52.43-52 (1995). MR 96e:11139
  • [Kur-43] S. Kuroda, Über den Dirichletschen Zahlkörper J. Fac. Sc. Imp. Univ. Tokyo Sect. I, 4 (1943). 383-406.
  • [Mc-Pa-Ra-95] T. M. McCall, C. J. Parry, R. R. Ranalli, On imaginary bicyclic biquadratic fields with cyclic $2$-class group. J. Number Theory 53, 88-99 (1995). MR 96e:11131
  • [Si-95] P. J. Sime, On the ideal class group of real biquadratic fields. Trans. Amer. Math. Soc. 347, 4855-4876 (1995). MR 96c:11130
  • [Ta-37] O. Taussky, A remark on the class field tower. J. London Math. Soc. 12 (1937). 82-85.
  • [Wa-66] H. Wada, On the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 201-209. MR 35:5414

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11R16, 11R29, 11R37

Retrieve articles in all journals with MSC (2000): 11R16, 11R29, 11R37


Additional Information

Abdelmalek Azizi
Affiliation: Département de Mathématiques, Faculté des Sciences, Université Mohammed 1, Oujda, Maroc
Email: azizi@sciences.univ-oujda.ac.ma

Ali Mouhib
Affiliation: Département de Mathématiques, Faculté des Sciences, Université Mohammed 1, Oujda, Maroc

DOI: https://doi.org/10.1090/S0002-9947-01-02753-2
Received by editor(s): October 13, 1999
Received by editor(s) in revised form: July 8, 2000
Published electronically: February 7, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society