On the commutation of the test ideal with localization and completion
Authors:
Gennady Lyubeznik and Karen E. Smith
Journal:
Trans. Amer. Math. Soc. 353 (2001), 31493180
MSC (1991):
Primary 13A35; Secondary 13C99
Published electronically:
January 18, 2001
MathSciNet review:
1828602
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a reduced ring that is essentially of finite type over an excellent regular local ring of prime characteristic. Then it is shown that the test ideal of commutes with localization and, if is local, with completion, under the additional hypothesis that the tight closure of zero in the injective hull of the residue field of every local ring of is equal to the finitistic tight closure of zero in . It is conjectured that this latter condition holds for all local rings of prime characteristic; it is proved here for all CohenMacaulay singularities with at most isolated nonGorenstein singularities, and in general for all isolated singularities. In order to prove the result on the commutation of the test ideal with localization and completion, a ring of Frobenius operators associated to each module is introduced and studied. This theory gives rise to an ideal of which defines the nonstrongly Fregular locus, and which commutes with localization and completion. This ideal is conjectured to be the test ideal of in general, and shown to equal the test ideal under the hypothesis that in every local ring of .
 [AM]
Aberbach, I., and MacCrimmon, B., Some results on test ideals, Proc. Edinburgh Math. Soc. (2) 42 (1999), 541549. CMP 2000:04
 [A1]
Yôichi
Aoyama, On the depth and the projective dimension of the canonical
module, Japan. J. Math. (N.S.) 6 (1980), no. 1,
61–66. MR
615014 (82h:13007)
 [A2]
Yôichi
Aoyama, Some basic results on canonical modules, J. Math.
Kyoto Univ. 23 (1983), no. 1, 85–94. MR 692731
(84i:13015)
 [C]
Janet
Cowden Vassilev, Test ideals in quotients of
𝐹finite regular local rings, Trans.
Amer. Math. Soc. 350 (1998), no. 10, 4041–4051. MR 1458336
(98m:13009), http://dx.doi.org/10.1090/S000299479802128X
 [G]
Donna
Glassbrenner, Strong 𝐹regularity in images
of regular rings, Proc. Amer. Math. Soc.
124 (1996), no. 2,
345–353. MR 1291770
(96d:13004), http://dx.doi.org/10.1090/S0002993996030304
 [Ha]
Robin
Hartshorne, Algebraic geometry, SpringerVerlag, New
YorkHeidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
(57 #3116)
 [HH1]
Melvin
Hochster and Craig
Huneke, Tight closure, invariant theory, and
the BriançonSkoda theorem, J. Amer.
Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784
(91g:13010), http://dx.doi.org/10.1090/S08940347199010177846
 [HH2]
Melvin
Hochster and Craig
Huneke, Tight closure and strong 𝐹regularity,
Mém. Soc. Math. France (N.S.) 38 (1989),
119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987).
MR
1044348 (91i:13025)
 [HH3]
Melvin
Hochster and Craig
Huneke, 𝐹regularity, test elements,
and smooth base change, Trans. Amer. Math.
Soc. 346 (1994), no. 1, 1–62. MR 1273534
(95d:13007), http://dx.doi.org/10.1090/S0002994719941273534X
 [HH4]
Melvin
Hochster and Craig
Huneke, Applications of the existence of big CohenMacaulay
algebras, Adv. Math. 113 (1995), no. 1,
45–117. MR
1332808 (96d:13014), http://dx.doi.org/10.1006/aima.1995.1035
 [HH5]
Melvin
Hochster and Craig
Huneke, Indecomposable canonical modules and connectedness,
Commutative algebra: syzygies, multiplicities, and birational algebra
(South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc.,
Providence, RI, 1994, pp. 197–208. MR 1266184
(95e:13014), http://dx.doi.org/10.1090/conm/159/01509
 [Ku]
Ernst
Kunz, On Noetherian rings of characteristic 𝑝, Amer.
J. Math. 98 (1976), no. 4, 999–1013. MR 0432625
(55 #5612)
 [L]
Gennady
Lyubeznik, 𝐹modules: applications to local cohomology and
𝐷modules in characteristic 𝑝>0, J. Reine Angew.
Math. 491 (1997), 65–130. MR 1476089
(99c:13005), http://dx.doi.org/10.1515/crll.1997.491.65
 [LS]
Lyubeznik, G. and Smith, K., Strong and weak regularity are equivalent for graded rings, American Journal of Mathematics 121 (1999), 12791290. CMP 2000:05
 [Mac]
MacCrimmon, B., Strong regularity and boundedness questions in tight closure, University of Michigan, thesis (1996).
 [Mats]
Hideyuki
Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies
in Advanced Mathematics, vol. 8, Cambridge University Press,
Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
(90i:13001)
 [Na]
Masayoshi
Nagata, Local rings, Interscience Tracts in Pure and Applied
Mathematics, No. 13, Interscience Publishers a division of John Wiley &
Sons New YorkLondon, 1962. MR 0155856
(27 #5790)
 [P1]
Dorin
Popescu, General Néron desingularization, Nagoya Math.
J. 100 (1985), 97–126. MR 818160
(87f:13019)
 [P2]
Dorin
Popescu, General Néron desingularization and
approximation, Nagoya Math. J. 104 (1986),
85–115. MR
868439 (88a:14007)
 [R]
Nicolae
Radu, Une classe d’anneaux noethériens, Rev.
Roumaine Math. Pures Appl. 37 (1992), no. 1,
79–82 (French). MR 1172271
(93g:13014)
 [S1]
Smith, Karen E., Tight closure of parameter ideals and Frationality, University of Michigan, thesis (1993).
 [S2]
K.
E. Smith, Tight closure of parameter ideals, Invent. Math.
115 (1994), no. 1, 41–60. MR 1248078
(94k:13006), http://dx.doi.org/10.1007/BF01231753
 [S3]
Karen
E. Smith, Test ideals in local rings,
Trans. Amer. Math. Soc. 347 (1995),
no. 9, 3453–3472. MR 1311917
(96c:13008), http://dx.doi.org/10.1090/S00029947199513119170
 [S4]
Karen
E. Smith, 𝐹rational rings have rational
singularities, Amer. J. Math. 119 (1997), no. 1,
159–180. MR 1428062
(97k:13004)
 [Sw]
Richard
G. Swan, NéronPopescu desingularization, Algebra and
geometry (Taipei, 1995) Lect. Algebra Geom., vol. 2, Int. Press,
Cambridge, MA, 1998, pp. 135–192. MR 1697953
(2000h:13006)
 [W]
Lori
J. Williams, Uniform stability of kernels of Koszul cohomology
indexed by the Frobenius endomorphism, J. Algebra 172
(1995), no. 3, 721–743. MR 1324179
(96f:13003), http://dx.doi.org/10.1006/jabr.1995.1067
 [AM]
 Aberbach, I., and MacCrimmon, B., Some results on test ideals, Proc. Edinburgh Math. Soc. (2) 42 (1999), 541549. CMP 2000:04
 [A1]
 Aoyama, Y., On the depth and the projective dimension of the canonical module, Japan. J. Math.(N.S.) 6 (1980), 6166. MR 82h:13007
 [A2]
 Aoyama, Y., Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), 8594. MR 84i:13015
 [C]
 Vassilev, J., Test ideals in quotients of Ffinite regular local rings, Trans. Amer. Math. Soc. 350 (1998), 40414051. MR 98m:13009
 [G]
 Glassbrenner, D., Strong Fregularity in images of regular rings, Proceedings of AMS 124 (1996), 345353. MR 96d:13004
 [Ha]
 Hartshorne, R., Algebraic Geometry, SpringerVerlag, New York, 1993. MR 57:3116 (1st ed.)
 [HH1]
 Hochster, M. and Huneke, C., Tight closure, invariant theory, and the BrianconSkoda theorem, JAMS 3 (1990), 31116. MR 91g:13010
 [HH2]
 Hochster, M. and Huneke, C., Tight closure and strong Fregularity, Mémoires de la Société Mathématique de France 38 (1989), 119133. MR 91i:13025
 [HH3]
 Hochster, M. and Huneke, C., Fregularity, test elements and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 162. MR 95d:13007
 [HH4]
 Hochster, M. and Huneke, C., Applications of the Existence of Big CohenMacaulay Algebras, Advances in Math 113 (1995), 45117. MR 96d:13014
 [HH5]
 Hochster, M. and Huneke, C., Indecomposable canonical modules and connectedness, in Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra, eds. Heinzer, Huneke, Sally, Contemporary Mathematics 159 (1994), 197208. MR 95e:13014
 [Ku]
 Kunz, E., On Noetherian rings of characteristic , Amer. J. Math. 97 (1975), 791813. MR 55:5612
 [L]
 Lyubeznik, G., Fmodules: Applications to local cohomology and Dmodules in characteristic , J. f. d. reine u. angew. Math. 491 (1997), 65130. MR 99c:13005
 [LS]
 Lyubeznik, G. and Smith, K., Strong and weak regularity are equivalent for graded rings, American Journal of Mathematics 121 (1999), 12791290. CMP 2000:05
 [Mac]
 MacCrimmon, B., Strong regularity and boundedness questions in tight closure, University of Michigan, thesis (1996).
 [Mats]
 Matsumura, H., Commutative Ring Theory, Cambridge University Press, Cambridge, 1989. MR 90i:13001
 [Na]
 Nagata, M., Local Rings, Interscience Publishers (a division of John Wiley and Sons), New York, 1962. MR 27:5790
 [P1]
 Popescu, D., General Néron desingularization, Nagoya Math. J. 100 (1985), 97126. MR 87f:13019
 [P2]
 Popescu, D., General Néron desingularization and approxiation, Nagoya Math. J. 104 (1986), 85115. MR 88a:14007
 [R]
 Radu, N., Une classe d'anneaux noetheriens, Rev. Roumaine Math. Pures Appl. 37 (1992), 7982. MR 93g:13014
 [S1]
 Smith, Karen E., Tight closure of parameter ideals and Frationality, University of Michigan, thesis (1993).
 [S2]
 Smith, Karen E., Tight closure of parameter ideals, Invent. Math. 115 (1994), 4160. MR 94k:13006
 [S3]
 Smith, Karen E., Test ideals in local rings, Trans. Amer. Math. Soc. 347 (9) (1995), 34533472. MR 96c:13008
 [S4]
 Smith, Karen E., Frational rings have rational singularities, Amer. Jour. Math. 119 (1) (1997), 159180. MR 97k:13004
 [Sw]
 Swan, R., NéronPopescu desingularization, Algebra and Geometry (Taipei, 1995), Lect. Algebra Geom., vol. 2, International Press, Cambridge, MA, 135192. MR 2000h:13006
 [W]
 Williams, L., Uniform stability of kernels of Koszul cohomology indexed by the Frobenius endomorphism, Jour. of Alg. 172 (1995), 721743. MR 96f:13003
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
13A35,
13C99
Retrieve articles in all journals
with MSC (1991):
13A35,
13C99
Additional Information
Gennady Lyubeznik
Affiliation:
Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email:
gennady@math.umn.edu
Karen E. Smith
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email:
kesmith@math.lsa.umich.edu
DOI:
http://dx.doi.org/10.1090/S0002994701026435
PII:
S 00029947(01)026435
Keywords:
Tight closure,
test ideal,
localisation,
Frobenius action
Received by editor(s):
January 4, 1999
Received by editor(s) in revised form:
July 12, 1999, and March 25, 2000
Published electronically:
January 18, 2001
Additional Notes:
Both authors were supported by the National Science Foundation
Article copyright:
© Copyright 2001
American Mathematical Society
