Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Siegel discs, Herman rings and the Arnold family

Author: Lukas Geyer
Journal: Trans. Amer. Math. Soc. 353 (2001), 3661-3683
MSC (2000): Primary 30D05; Secondary 58F03, 58F08
Published electronically: April 24, 2001
MathSciNet review: 1837254
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


We show that the rotation number of an analytically linearizable element of the Arnold family $f_{a,b}(x)=x+a+b\sin(2\pi x)\pmod 1$, $a,b\in{\mathbb R}$, $0<b<1/(2\pi)$, satisfies the Brjuno condition. Conversely, for every Brjuno rotation number there exists an analytically linearizable element of the Arnold family. Along the way we prove the necessity of the Brjuno condition for linearizability of $P_{\lambda,d}(z)=\lambda z(1+z/d)^d$ and $E_\lambda(z)=\lambda z e^z$, $\lambda=e^{2\pi i\alpha}$, at 0. We also investigate the complex Arnold family and classify its possible Fatou components. Finally, we show that the Siegel discs of $P_{\lambda,d}$ and $E_\lambda$ are quasidiscs with a critical point on the boundary if the rotation number is of constant type.

References [Enhancements On Off] (What's this?)

  • [Ah1] Lars V. Ahlfors, Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. MR 0200442
  • [Ah2] Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0357743
  • [Ar] Arnol'd, V.I., Small denominators. I: Mappings of the circumference onto itself., AMS Translations, Ser. 2, 46 (1965), 213-284.
  • [Ba] I. N. Baker, Wandering domains for maps of the punctured plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 2, 191–198. MR 951969, 10.5186/aasfm.1987.1204
  • [Be] Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089
  • [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in 𝑅ⁿ, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), no. 2, 257–324. MR 731786, 10.5186/aasfm.1983.0806
  • [CG] Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383
  • [Do] Adrien Douady, Disques de Siegel et anneaux de Herman, Astérisque 152-153 (1987), 4, 151–172 (1988) (French). Séminaire Bourbaki, Vol. 1986/87. MR 936853
  • [EL] A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102
  • [Fa1] Fagella, N., The Complex Standard Family, Preprint.
  • [Fa2] Núria Fagella, Limiting dynamics for the complex standard family, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), no. 3, 673–699. MR 1345989, 10.1142/S0218127495000521
  • [Ge1] Geyer, L., Quasikonforme Deformation in der Iterationstheorie, Diplomarbeit, TU Berlin, 1994.
  • [Ge2] Lukas Geyer, Linearization of structurally stable polynomials, Progress in holomorphic dynamics, Pitman Res. Notes Math. Ser., vol. 387, Longman, Harlow, 1998, pp. 27–30. MR 1643012
  • [GF] Hans Grauert and Klaus Fritzsche, Einführung in die Funktionentheorie mehrerer Veränderlicher, Springer-Verlag, Berlin-New York, 1974 (German). Hochschultext. MR 0372232
  • [He1] Michael-Robert Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5–233 (French). MR 538680
  • [He2] Herman, M., Conjugaison quasi-symmétrique des homéomorphismes analytiques du cercle a des rotations, Manuscript.
  • [Hi] A. Hinkkanen, Uniformly quasiregular semigroups in two dimensions, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 205–222. MR 1375517
  • [Ke] Linda Keen, Topology and growth of a special class of holomorphic self-maps of 𝐶*, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 321–328. MR 1007413, 10.1017/S0143385700004995
  • [Ko] J. Kotus, Iterated holomorphic maps on the punctured plane, Dynamical systems (Sopron, 1985) Lecture Notes in Econom. and Math. Systems, vol. 287, Springer, Berlin, 1987, pp. 10–28. MR 1120038, 10.1007/978-3-662-00748-8_2
  • [Kr] Hartje Kriete, Herman’s proof of the existence of critical points on the boundary of singular domains, Progress in holomorphic dynamics, Pitman Res. Notes Math. Ser., vol. 387, Longman, Harlow, 1998, pp. 31–40. MR 1643013
  • [LV] O. Lehto and K. I. Virtanen, Quasikonforme Abbildungen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band, Springer-Verlag, Berlin-New York, 1965 (German). MR 0188434
  • [Ma] P. M. Makienko, Iterations of analytic functions in 𝐶*, Dokl. Akad. Nauk SSSR 297 (1987), no. 1, 35–37 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 3, 418–420. MR 916928
  • [Mi] Milnor, J., Dynamics in One Complex Variable: Introductory Lectures, SUNY Stony Brook Preprint 1990/5.
  • [MS] Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171
  • [PM1] Ricardo Pérez Marco, Solution complète au problème de Siegel de linéarisation d’une application holomorphe au voisinage d’un point fixe (d’après J.-C. Yoccoz), Astérisque 206 (1992), Exp. No. 753, 4, 273–310 (French, with French summary). Séminaire Bourbaki, Vol. 1991/92. MR 1206071
  • [PM2] Norbert Steinmetz, Rational iteration, de Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235
  • [Po] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706
  • [Sh] Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140
  • [St] Norbert Steinmetz, Rational iteration, de Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235
  • [Su] Dennis Sullivan, Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR 730296, 10.1007/BFb0061443
  • [Sw] Swiatek, G., Remarks on critical circle homeomorphisms, Bol. Soc. Bras. Mat., 29 (1998), 329-351.
  • [Yo1] Jean-Christophe Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque 231 (1995), 3–88 (French). Petits diviseurs en dimension 1. MR 1367353
  • [Yo2] Yoccoz, J.-C., Conjugaison des difféomorphismes analytiques du cercle, Preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 30D05, 58F03, 58F08

Retrieve articles in all journals with MSC (2000): 30D05, 58F03, 58F08

Additional Information

Lukas Geyer
Affiliation: Universität Dortmund, FB Mathematik, LS IX, 44221 Dortmund, Germany

Keywords: Arnold family, standard family, linearization, Herman rings, circle diffeomorphisms
Received by editor(s): December 18, 1998
Received by editor(s) in revised form: December 12, 1999
Published electronically: April 24, 2001
Additional Notes: The author wishes to thank “Studienstiftung des deutschen Volkes” and DAAD for financial support.
Article copyright: © Copyright 2001 American Mathematical Society