ILL-POSEDNESS FOR THE DERIVATIVE SCHRÖDINGER AND
GENERALIZED BENJAMIN-ONO EQUATIONS

H. A. BIAGIONI AND F. LINARES

ABSTRACT. Ill-posedness is established for the initial value problem (IVP)
associated to the derivative nonlinear Schrödinger equation for data in $H^s(\mathbb{R})$,
$s < 1/2$. This result implies that best result concerning local well-posedness
for the IVP is in $H^s(\mathbb{R})$, $s \geq 1/2$. It is also shown that the IVP associated
to the generalized Benjamin-Ono equation for data below the scaling is in fact
ill-posed.

1. INTRODUCTION

In this paper we are concerned with the ill-posedness of the initial value problems
(IVP) associated to the derivative nonlinear Schrödinger equation and the general-
ized Benjamin-Ono equation, hereafter (DNLS) and (GBO) equation respectively.

The notion of well-posedness we will use in this work is the same as in [7], that
is, the existence, uniqueness, persistence property and continuous dependence of
the solution upon the data.

To describe our results, we begin by considering the IVP associated to the DNLS
equation, that is,

$$
\begin{align*}
\frac{\partial}{\partial t} u &= i \frac{\partial^2}{\partial x^2} u + \partial_x(|u|^2 u), \quad x \in \mathbb{R}, t > 0, \\
u(x,0) &= u_0(x).
\end{align*}
$$

(1.1)

This equation appears as a model of the Alfvén solitons in plasma physics (see
[13, 22]). From the point of view of partial differential equations it has been ex-
tensively studied (see [6, 14, 16, 19, 20] and references therein).

Recently, Takaoka in [19] showed that the IVP (1.1) is locally well-posed in
$H^s(\mathbb{R})$, $s \geq 1/2$. To prove this result he used the techniques introduced by Bourgain
([5]) and Kenig, Ponce, Vega ([8], [10]) plus a gauge transformation. He also showed
by means of an example that the best possible result using the key estimate in his
proof was indeed $H^{1/2}$.

On the other hand, a scaling argument ([10]) suggests that the best possible
value to obtain local well-posedness in H^s is $s = 0$. Indeed, if u is a solution of
(1.1), then

$$
u_{\lambda}(x, t) = \lambda^{1/2} u(\lambda x, \lambda^2 t),$$

(1.2)

for any $\lambda \in \mathbb{R}$, is also a solution of DNLS with data

$$
u_{\lambda}(x, 0) = \lambda^{1/2} u_0(\lambda x).$$

Received by the editors April 5, 2000 and, in revised form, July 24, 2000.
1991 Mathematics Subject Classification. Primary 35Q55, 35Q51.
Key words and phrases. Ill-posedness, Schrödinger equation, Benjamin-Ono equation.

©2001 American Mathematical Society
A straightforward calculation gives
\[\| D_x^s u_\lambda(0) \| = \lambda^s \| D_x^s u_0 \| \]
which implies that the highest derivative term in the H^s norm is invariant under
the scaling transform (1.2) for the value $s = 0$.

Our purpose here is to show that the IVP associated to the DNLS equation is ill-
posed in H^s, $s < 1/2$, which will imply that the best possible local well-posedness
result is the one in [19].

To establish this result we will follow the recent method introduced by Kenig, Ponce, Vega [11] (see also [2], [3]), to establish ill-posedness for the IVP associated to
the cubic Schrödinger equation, KdV and mKdV equations. We will describe briefly
their method: the idea is to show that the solution does not depend continuously (or
uniformly continuously) on its data in H^s, by constructing a sequence converging
to the data in H^s while the corresponding sequence of solutions does not converge
in H^s. The sequence consists of solitary wave solutions. The extra difficulty we
have in our case is the lack of Galilean invariance for solutions of the derivative
Schrödinger equation, which is a key point in the treatment of ill-posedness for the
focusing cubic Schrödinger equation. To replace the Galilean invariance we still
have a two-parameter family of solitary wave solutions that allows us to obtain the
desired result.

We also consider the IVP associated to the GBO, that is,
\[
\begin{align*}
\partial_t u + H \partial_x^2 u + u^k \partial_x u &= 0, \quad x \in \mathbb{R}, t > 0, \quad k = 1, 2, \ldots, \\
u(x, 0) &= u_0(x),
\end{align*}
\]
where H denotes the Hilbert transform. For $k = 1$ we have the well known
Benjamin-Ono equation which was deduced by Benjamin [1] and Ono [14] as a
model in internal-wave propagation. The best result regarding local well-posedness
in H^s is due to Ponce [18], (see also [12]). He showed that the IVP associated to
the Benjamin-Ono equation is locally (globally) well-posed in H^s, $s \geq 3/2$. For
the GBO equation with $k > 1$, local well-posedness is known in H^s, $s > 3/2$, for
any data. For small data, Kenig, Ponce and Vega [9] proved that (1.3) is locally
well-posed in $H^s(\mathbb{R})$, with
\[
\begin{align*}
s > 1 & \text{ if } k = 2, \\
s > 5/6 & \text{ if } k = 3, \\
s \geq 3/4 & \text{ if } k \geq 4.
\end{align*}
\]
These are the best results known to date.

Looking for the best possible local well-posedness results we argue as above: we
use a scaling argument to find the critical Sobolev indices. If $u(x, t)$ solves (1.3)
then $u_\lambda(x, t) = \lambda^{1/k} u(\lambda x, \lambda^2 t)$, $\lambda > 0$, also solves (1.3) with initial data $u_\lambda(x, 0)$ satisfying
\[
\| u_\lambda(\cdot, 0) \|_{\dot{H}^s}^2 = \lambda^{2s + \frac{3}{k} - 1} \| u(\cdot, 0) \|_{\dot{H}^s}^2,
\]
(\dot{H}^s is the homogeneous Sobolev space), which implies that the highest derivative
that leaves the norm invariant is $s_k = 1/2 - 1/k$.

We can observe that these results are far from those given by the scaling
argument. For instance, for the Benjamin-Ono equation the scaling suggests local
well-posedness for $s \geq -1/2$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Our results in this case give ill-posedness of the IVP (1.3) in Sobolev spaces with index below the one given by the scaling argument. Here we follow closely the ideas in [2] and [3].

The paper is organized as follows. In Section 2 we will deal with the derivative Schrödinger equation. The result concerning the generalized Benjamin-Ono (GBO) equation will be proved in Section 3.

2. The derivative Schrödinger equation

In this section we consider the IVP associated to the derivative Schrödinger equation, that is,

\[\begin{cases} \partial_t u = i \partial_x^2 u + \partial_x(|u|^2 u), & x \in \mathbb{R}, t > 0, \\ u(x, 0) = u_0(x). \end{cases} \]

(2.1)

The notion of well-posedness used here is the one given in the introduction but stretched a little bit by requiring the mapping data, \(u_0 \rightarrow u(t) \) to be uniformly continuous, where \(u(t) \) is the solution of (2.1). In case this requirement is not satisfied we will say that the problem is ill-posed. Thus our main result in this section is

Theorem 2.1. The IVP (2.1) is ill-posed in \(H^s(\mathbb{R}) \), \(s < 1/2 \), in the sense that the mapping data-solution, \(u_0 \rightarrow u(t) \) is not uniformly continuous.

Proof. It was proved in [21] that there exist solitary waves in the form

\[u_{c,\omega}(x, t) = e^{-i\omega t} e^{i\psi(x-ct)} a(x-ct) \]

with \(\omega, c \) real numbers and \(\psi(\cdot), a(\cdot) \) real functions given by

\[a^2(x) = (d_3 + d_5 \cosh(d_6 x))^{-1}; \]

\[\psi'(x) = \frac{c}{2} + \frac{3}{4} a^2(x); \]

(2.2)

\[d_3 = \frac{c}{2(-4\omega - c^2)}; \]

\[d_5^2 = \frac{-\omega}{(-4\omega - c^2)^2}; \]

\[d_6^2 = -4\omega - c^2. \]

Setting \(\alpha = \frac{d_6}{\omega} \), it is easy to see that

\[\psi(x) = \frac{cx}{2} + 3 \arctan \left(\frac{\exp(d_6 x) + \alpha}{(1 - \alpha^2)^{1/4}} \right). \]

Let

\[\varphi_{c,\omega}(x) = u_{c,\omega}(x, 0) = e^{i\varphi} e^{ig(x) a(x)} \]

\[= e^{i\varphi} e^{ig(x)} \frac{d_6}{(-\omega)^{1/4} (\alpha + \cosh(d_6 x))^{1/2}} \]

where

\[g(x) = 3 \arctan \left(\frac{\exp(d_6 x) + \alpha}{(1 - \alpha^2)^{1/2}} \right). \]
Setting
\[g(x) = 3 \arctan \left(\frac{e^x + \alpha}{(1 - \alpha^2)^{1/2}} \right), \quad h(x) = \frac{1}{(\alpha + \cosh x)^{1/2}}, \]
\[F(x) = e^{ig(x)} h(x), \]
we can write
\[\varphi_{c,\omega}(x) = \frac{d_6}{(-\omega)^{1/4}} e^{ig(d_6 x)} h(d_6 x) = \frac{d_6}{(-\omega)^{1/4}} e^{ig} F(d_6 x) \]
and thus
\[\hat{\varphi}_{c,\omega}(\xi) = \frac{1}{(-\omega)^{1/4}} \hat{F}(\frac{\xi}{d_6} - \frac{c}{2d_6}). \]

Then we have, writing \(d_{61} \) and \(d_{62} \) as the corresponding constants in (2.2) associated with \(c_1, \omega_1 \) and \(c_2, \omega_2 \), respectively, that
\[
\| \varphi_{c_1,\omega_1} - \varphi_{c_2,\omega_2} \|_{H^s}^2 = \int (1 + |\xi|^2)^s |\hat{\varphi}_{c_1,\omega_1}(\xi) - \hat{\varphi}_{c_2,\omega_2}(\xi)|^2 d\xi \\
= d_{61} \int (1 + |d_{61}\eta|^2)^s \left| \frac{1}{(-\omega_1)^{1/4}} \hat{F}(\eta - \frac{c_1}{2d_{61}}) - \frac{1}{(-\omega_2)^{1/4}} \hat{F}(\eta - \frac{c_2}{2d_{62}}) \right|^2 d\eta \\
\simeq (d_{61})^{2s+1} \left\{ \int (1 + |\eta|^2)^s \left| \frac{1}{(-\omega_1)^{1/4}} \hat{F}(\eta - \frac{c_1}{2d_{61}}) - \frac{1}{(-\omega_2)^{1/4}} \hat{F}(\eta - \frac{c_2}{2d_{62}}) \right|^2 d\eta \right\} \\
+ \int (1 + |\eta|^2)^s \left| \frac{1}{(-\omega_1)^{1/4}} \hat{F}(\eta - \frac{c_1}{2d_{61}}) - \hat{F}(\frac{d_{61}}{d_{62}} - \frac{c_1}{2d_{62}}) \right|^2 d\eta \\
+ \int (1 + |\eta|^2)^s \left| \frac{1}{(-\omega_1)^{1/4}} \hat{F}(\eta - \frac{c_1}{2d_{61}}) - \frac{1}{(-\omega_2)^{1/4}} \hat{F}(\eta - \frac{c_2}{2d_{62}}) \right|^2 d\eta \right\} \\
= I_1 + I_2 + I_3.
\]

Let \(N \) be a large positive integer to be chosen later. Take
\[c_j = N_j \simeq N, \quad \omega_j = -(N_j^{4s} + \frac{N_j^2}{4}), \quad j = 1, 2, \]
so that if \(N_1 < N_2 \),
\[d_{6j} = 2N_j^{2s}, \quad d_{61} < d_{62}, \quad |d_{62} - d_{61}| = 2|N_2^{2s} - N_1^{2s}| \simeq |N_2 - N_1|N^{2s-1}.
\]

Now, \(\hat{F} \) concentrates in \(B_1(0) \), where \(B_1(0) \) is the ball of center 0 and radius 1. Thus if \(\eta \in B_1(N^{1-2s}) \), then \(|\eta| \simeq N^{1-2s} \). It follows that, by the mean value
theorem and Cauchy-Schwarz’s inequality

\[I_1 = \frac{(d_{61})^{2s+1}}{(-\omega)^{1/2}} \int (1 + |\eta|^2)^s \left| \hat{F}(\eta - \frac{c_1}{2d_{61}}) - \hat{F}(\eta \frac{d_{61}}{d_{62}} - \frac{c_1}{2d_{61}}) \right|^2 d\eta \]

\[\simeq \frac{N^{2s(2s+1)}}{N^{4s+1} + N^2} N^{2s(1-2s)} \int \left| \frac{c_1}{2d_{61}} \right|^2 d\eta \]

(2.5)

\[\leq \frac{N^{4s}}{N^{4s} + N^2} \int \left| \frac{c_1}{2d_{61}} \right|^2 d\eta \int \left| \frac{c_1}{2d_{61}} \right|^2 |\hat{F}'(\alpha)|^2 d\eta \]

\[\simeq C \frac{N^{4s-1}|N_1 - N_2|N^{2s-1}}{N^{4s}} \int \left| \frac{c_1}{2d_{61}} \right|^2 |\hat{F}'(\alpha)|^2 d\alpha \]

\[\simeq C N^{4s-2}|N_1 - N_2|(I_{11} - I_{12}) \]

where

\[I_{11} = \int_0^\infty \eta \int_{\eta \frac{d_{61}}{d_{62}}}^{\eta \frac{d_{61}'}{d_{62}'}} |\hat{F}'(\alpha)|^2 d\alpha d\eta \]

and

\[I_{12} = \int_{-\infty}^0 \eta \int_{\eta \frac{d_{61}}{d_{62}}}^{\eta \frac{d_{61}'}{d_{62}'} - \eta} |\hat{F}'(\alpha)|^2 d\alpha d\eta. \]

We estimate each term on the right hand side of (2.5). Fubini’s theorem gives

\[I_{11} = \int_{\pi \frac{d_{61}}{d_{61}'} \frac{d_{62}}{d_{62}'} \frac{\eta}{\eta d_{61}}}^{\infty} |\hat{F}'(\alpha)|^2 \int_{\alpha + \frac{\pi \frac{d_{61}}{d_{61}'} \frac{d_{62}}{d_{62}'} \frac{\eta}{\eta d_{61}}}^{\infty} \eta d\eta d\alpha \]

(2.6)

\[= \frac{1}{2} \int_{-\infty}^{\infty} |\hat{F}'(\alpha)|^2 (\alpha + \frac{c_1}{2d_{61}})^2 \left[(\frac{d_{62}}{d_{61}})^2 - 1 \right] d\alpha. \]

A similar argument yields

(2.7)

\[I_{12} = \frac{1}{2} \int_{-\infty}^{\infty} |\hat{F}'(\alpha)|^2 \left(\alpha + \frac{c_1}{2d_{61}} \right)^2 \left[1 - (\frac{d_{62}}{d_{61}})^2 \right] d\alpha. \]

Combining (2.6) and (2.7) it follows that

\[I_{11} - I_{12} = \frac{1}{2} \int_{\mathbb{R}} |\hat{F}'(\alpha)|^2 \left(\alpha + \frac{c_1}{2d_{61}} \right)^2 \left[1 - (\frac{d_{62}}{d_{61}})^2 \right] d\alpha. \]

Observe that

\[\frac{(d_{62})^2 - (d_{61})^2}{(d_{61})^2} \simeq \frac{4(N_2^{4s} - N_1^{4s})}{4N^{4s}} \simeq \frac{(N_2 - N_1)N^{4s-1}}{N^{4s}} = \frac{N_2 - N_1}{N}. \]
Returning to (2.5), we have

\[
I_1 = C N^{4s-2} |N_1 - N_2| \int |\hat{F}'(\alpha)|^2 \left(\alpha + \frac{c_1}{2d_{e_1}} \right)^2 \left[1 - \left(\frac{d_{e_2}}{d_{e_1}} \right)^2 \right] d\alpha
\]

\[
= C N^{4s-3} (N_1 - N_2)^2 \int |\hat{F}'(\alpha - \frac{c_1}{2d_{e_1}})|^2 \alpha^2 d\alpha
\]

\[
\simeq C N^{4s-3} (N_1 - N_2)^2 N^{2(1-2s)} \|\hat{F}'\|_2^2
\]

\[
= C \frac{(N_1 - N_2)^2}{N} \|\hat{F}'\|_2^2.
\]

Now we estimate \(I_2 \)

\[
I_2 = (d_{e_1})^{2s+1} \int (1 + |\eta|^2)^s |\hat{F}(\eta - \frac{c_1}{2d_{e_1}}) - \hat{F}(\eta - \frac{c_2}{2d_{e_2}})|^2 d\eta
\]

\[
= (d_{e_1})^{2s+1} \int (1 + |\eta|^2)^s |\hat{F}'(\eta) d_{e_1} - \hat{F}'(\eta) d_{e_2}|^2 d\eta
\]

\[
\simeq (d_{e_1})^{2s+1} \int (1 + |\eta|^2)^s |\hat{F}'(\eta) d_{e_1} - \hat{F}'(\eta) d_{e_2}|^2 d\eta
\]

\[
\leq (d_{e_1})^{2s+1} \int (1 + |\eta|^2)^s |d_{e_1} - d_{e_2}|^2 \int |\hat{F}'(\eta)|^2 d\eta d\eta
\]

\[
\approx (d_{e_1})^{2s+1} \int (1 + |\eta|^2)^s |d_{e_1} - d_{e_2}|^2 \|\hat{F}'\|^2_2
\]

\[
\simeq N^{4s-1} \frac{|c_1 - c_2|}{d_{e_1}} \|\hat{F}'\|^2_2
\]

Finally,

\[
I_3 = (d_{e_1})^{2s+1} \int |\eta|^2 \left(\frac{1}{\sqrt{-\omega_1} - \sqrt{-\omega_2}} \right)^2 |\hat{F}'(\eta) d_{e_1} - \hat{F}'(\eta) d_{e_2}|^2 d\eta
\]

\[
= (d_{e_1})^{2s+1} \left(\frac{\omega_2 - \omega_1}{\sqrt{-\omega_1} \sqrt{-\omega_2}} \right)^2 \int |\eta|^2 |\hat{F}'(\eta) d_{e_1} - \hat{F}'(\eta) d_{e_2}|^2 d\eta
\]

\[
= (d_{e_1})^{2s+1} \left(\frac{\omega_2 - \omega_1}{\sqrt{-\omega_1} \sqrt{-\omega_2}} \right)^2 \frac{1}{\sqrt{-\omega_1} \sqrt{-\omega_2}} \int |\eta|^2 |\hat{F}'(\eta - \frac{c_2}{2d_{e_2}})|^2 d\eta
\]

\[
\simeq N^{2s(2s+1)-3} \frac{|N_1^2 - N_2^2|}{N^2} \left(\frac{c_2}{2d_{e_2}} \right)^2 \|\hat{F}'\|^2
\]

\[
\simeq N^{4s-3} (N_1 - N_2)^2 \|\hat{F}'\|^2,
\]

where we have used the mean value theorem and \(\omega_o \in [\omega_2, \omega_1] \).

Set

\[
\alpha = \frac{d_3}{d_5} = \frac{c}{2\sqrt{-\omega}} < 1, \quad \beta^2 = 1 - \alpha^2 = \frac{-4\omega - c^2}{-4\omega},
\]
this implies
\[
\frac{\alpha}{\beta} = \frac{c}{\sqrt{-4\omega - \alpha^2}} \quad \text{and} \quad \frac{1}{\beta} \simeq N^{1-2s}.
\]

We can take \(N \) large enough so that, setting \(\theta = \arctan \frac{\alpha}{\beta} \),
\[
\frac{\pi}{2} - \theta \simeq \frac{\pi}{2} - \arctan N^{1-2s} \simeq N^{-2s},
\]
since \(2s < 1 \).

Next we consider the corresponding solutions \(u \). As in (2), we get, from (2.12),
\[
I_1, I_2 \leq \frac{C (N_1 - N_2)^2}{N}; \quad I_3 \leq \frac{C (N_1 - N_2)^2}{N^2}.
\]

Then (2) can be estimated by
\[
\| \varphi_{c_1,\omega_1} - \varphi_{c_2,\omega_2} \|_{H^s} \leq \frac{C (N_1 - N_2)^2}{N}.
\]

Since \(2s < 1 \) we can choose
\[
N_1 = N \quad \text{and} \quad N_2 = N + \delta N^s
\]
to have
\[
\| \varphi_{c_1,\omega_1} - \varphi_{c_2,\omega_2} \|_{H^s} \leq C \delta^2 N^{2s-1} \leq C \delta^2.
\]

Next we consider the corresponding solutions \(u_{c_1,\omega_1}(x,t) \) and \(u_{c_2,\omega_2}(x,t) \) at time \(t = T \). As in (2), we get, from (2.12),
\[
\| \varphi_{c,\omega} \|_{H^s}^2 \simeq \frac{d_{2s+1}}{(\omega)^{2s+1}} \int |\eta|^{2s} |\hat{F}(\eta - \frac{c}{2\omega})|^2 d\eta
\]
\[
\simeq \frac{N^{2s(2s+1)}}{N} N^{2s(1-2s)} \| F \|_2^2 \simeq C.
\]

We shall compute \(\| u_{c_1,\omega_1}(\cdot,T) - u_{c_2,\omega_2}(\cdot,T) \|_{H^s} \), using the fact that
\[
\| u_{c_j,\omega_j}(\cdot,T) \|_{H^s} = \| \varphi_{c_j,\omega_j} \|_{H^s} \simeq C,
\]
\(j = 1, 2 \) (by the invariance of the solitary wave solutions), and
\[
\| u_{c_1,\omega_1}(\cdot,T) - u_{c_2,\omega_2}(\cdot,T) \|_{H^s}^2 \geq N^{2s} \| u_{c_1,\omega_1}(\cdot,T) - u_{c_2,\omega_2}(\cdot,T) \|^2;
\]
on the other hand, we have that
\[
u_{c_j,\omega_j}(x,T) = e^{-i\omega_j T} e^{i\phi(x-c_j T)} d_{\omega_j}(x-c_j T), \quad j = 1, 2.
\]
The support of \(u_{c_j, \omega_j} (T) \) is concentrated in \(B_{(d_{a_j})^{-1}} (T c_j) \), \(j = 1, 2 \). Thus, given \(\delta > 0 \) and \(T > 0 \) if \(c_1, c_2 \) are chosen such that
\[
T(c_2 - c_1) \gg \max \left(\frac{1}{d_{a_1}}, \frac{1}{d_{a_2}} \right) \simeq N^{-2s},
\]
there is no interaction and
\[
\| u_{c_1, \omega_1} (\cdot, T) - u_{c_2, \omega_2} (\cdot, T) \|^2 \simeq \| u_{c_1, \omega_1} (\cdot, T) \|^2 + \| u_{c_2, \omega_2} (\cdot, T) \|^2 \simeq N^{-2s}.
\]
Combining the above estimates we get
\[
\| u_{c_1, \omega_1} (\cdot, T) - u_{c_2, \omega_2} (\cdot, T) \|^2 \gtrsim C.
\]
So, if we choose \(N \) such that \(N^{3s} \gg \frac{1}{T_0} \) then, from the choice of \(c_1, c_2 \) in (2.16)
\[
T(c_2 - c_1) = T \delta N^s \gg N^{-2s}
\]
and we get (2.18).

3. THE GENERALIZED BENJAMIN-ONO EQUATION

The generalized Benjamin-Ono equation has, for \(k = 1 \), an explicit solitary wave
\[
u_c (x, t) = \frac{4}{(cx - ct)^2 + 1},
\]
and for \(k > 1 \), Weinstein in [29] proved that there exists a solitary wave \(u_c (x, t) = \varphi_c (x - ct) \) of (1.3), that is, \(\varphi_c \) is a solution of
\[
-c \varphi'' + \varphi^k \varphi' + (H \varphi)'' = 0.
\]
where \(\varphi_c \in C^\infty (\mathbb{R}) \cap H^{1/2} (\mathbb{R}) \) is positive, symmetric and decreasing in \(|x|\).

Theorem 3.1. The initial value problem (1.3) with \(k = 1 \) is ill-posed in \(H^s (\mathbb{R}) \), \(s < -1/2 \) and, with \(k > 1 \), it is ill-posed in \(H^{s_k} (\mathbb{R}) \) with \(s_k = 1/2 - 1/k \) in the sense that the mapping data-solution, \(u_0 \to u(t) \) is not uniformly continuous.

Proof. For \(k = 1 \) and \(s > 1/2 \), \(c = 1/\varepsilon \) we have, from (3.1)
\[
\| u_\varepsilon (\cdot, 0) \|_{2, -s}^2 = \| (1 - \Delta)^{-s/2} u_\varepsilon (\cdot, 0) \|^2 = 16 \pi^2 \int_{-\infty}^{\infty} e^{-4 \pi \varepsilon |\xi|} \| \xi \|^{2s} d\xi
\]
which converges uniformly as \(\varepsilon \to 0 \) to \(16 \pi^2 \| \delta \|_{H^{s_k}}^2 \) (since \(\delta = 1 \)). Now we prove that \(u_\varepsilon (\cdot, 0) \) converges also weakly to \(4 \pi \delta \): let \(\varphi \in C^\infty (\mathbb{R}) \), then
\[
\lim_{\varepsilon \to 0} \langle u_\varepsilon, \varphi \rangle = \lim_{\varepsilon \to 0} \int \frac{4}{x^2 / \varepsilon^2 + 1} \varphi (x) dx = 4 \lim_{\varepsilon \to 0} \frac{\varphi (\varepsilon y)}{y^2 + 1} dy
\]
\[
= 4 \pi \varphi (0) = 4 \pi \delta, \varphi,
\]
thus implying the convergence in \(H^{-s} \). For \(t > 0 \) the invariance in \(t \) implies the convergence of \(\| u_\varepsilon (\cdot, t) \|_{H^{-s}} \) to \(4 \delta \| \delta \|_{H^{-s}} \) but \(u_\varepsilon (\cdot, t) \to 0 \) weakly, since, as \(\varphi \) has compact support,
\[
\lim_{\varepsilon \to 0} \langle u_\varepsilon, \varphi \rangle = \int \frac{4}{(x/\varepsilon - t/\varepsilon^2)^2 + 1} \varphi (x) dx
\]
\[
= 4 \lim_{\varepsilon \to 0} \int \frac{\varphi (t/\varepsilon + \varepsilon y)}{y^2 + 1} dy = 0.
\]
This proves that the initial value problem for the Benjamin-Ono equation is locally ill-posed in \(H^s (\mathbb{R}) \) for \(s < -1/2 \).
Now, for \(k > 1 \), let
\[
\varphi_{k,c}(x) = c^{1/k} \varphi_1(cx),
\]
where \(\varphi_1 \) solves (3.2) with \(c = 1 \) (\(\varphi_{k,c} \) solves (3.2) with \(c > 0 \)), and
\[
u_{k,c}(x,t) = \varphi_{k,c}(x-ct) = c^{1/k} \varphi_1(cx - c^2 t)
\]
which is a solitary wave solution for (1.3) with speed of propagation \(c \).

Let us evaluate the \(H^{s_k} \)-norm of the difference of two solitary wave solutions with speeds \(c_1, c_2 \) at \(t = 0 \) and \(t > 0 \):
\[
\|(u_{k,c_1} - u_{k,c_2})(\cdot,0)\|_{H^{s_k}} = \|D^{s_k} (\varphi_{k,c_1} - \varphi_{k,c_2})\|^2
= \|D^{s_k} \varphi_{k,c_1}\|^2 + \|D^{s_k} \varphi_{k,c_2}\|^2 - 2\langle \varphi_{k,c_1}, \varphi_{k,c_2}\rangle_{s_k}.
\]
We have
\[
\langle \varphi_{k,c_1}, \varphi_{k,c_2}\rangle_{s_k} = \int D^{s_k} \varphi_{k,c_1}(x)\overline{D^{s_k} \varphi_{k,c_2}(x)} dx
= \int \hat{\varphi}_{k,c_1}(\xi)\overline{\hat{\varphi}_{k,c_2}(\xi)}|\xi|^{2s_k} d\xi
= (c_1 c_2)^{1/k-1} \int \hat{\varphi}_1(\xi/c_1)\overline{\hat{\varphi}_1(\xi/c_2)}|\xi|^{2s_k} d\xi
= (c_1 c_2)^{1/k-1} \int \hat{\varphi}_1(\eta)\overline{\hat{\varphi}_1(\eta/c_2)}|\eta|^{2s_k} d\eta.
\]
As \(\theta := c_1/c_2 \rightarrow 1 \) we get
\[
\lim_{\theta \to 1} \langle \varphi_{k,c_1}, \varphi_{k,c_2}\rangle_{s_k} = \|D^{s_k} \varphi_1\|^2 = \|\varphi_1\|^2_{H^{s_k}}.
\]
Analogously, for \(i = 1, 2 \),
\[
\|\varphi_{k,c_i}\|^2_{H^{s_k}} = \int |\xi|^{2s_k} |\hat{\varphi}_{k,c_i}(\xi)|^2 d\xi
= c_i^{2/k-2} \int |\xi|^{2s_k} |\hat{\varphi}_1(\xi/c_i)|^2 d\xi
= c_i^{2s_k+1+2/k-2} \int |\eta|^{2s_k} |\hat{\varphi}_1(\eta)|^2 d\eta
= \|\varphi_1\|^2_{H^{s_k}}.
\]
Replacing (3.5) and (3.6) in (3.4) and taking limits as \(\theta \to 1 \) we get
\[
\lim_{\theta \to 1} \|(u_{k,c_1} - u_{k,c_2})(\cdot,0)\|^2_{H^{s_k}} = 0.
\]
Now for \(t > 0 \) we have similarly
\[
\langle u_{k,c_1}(\cdot,t), u_{k,c_2}(\cdot,t)\rangle_{s_k} = \int D^{s_k} \varphi_{k,c_1}(x-ct)\overline{D^{s_k} \varphi_{k,c_2}(x-ct)} dx
= \int e^{-2\pi i \xi (c_1-c_2)} \hat{\varphi}_{k,c_1}(\xi)\overline{\hat{\varphi}_{k,c_2}(\xi)}|\xi|^{2s_k} d\xi
= \int e^{-2\pi i \xi (c_1-c_2)} c_1^{1/k-1} c_2^{1/k-1} \hat{\varphi}_1(\xi/c_1)\overline{\hat{\varphi}_1(\xi/c_2)}|\xi|^{2s_k} d\xi
= (c_1 c_2)^{1/k-1} \int e^{-2\pi i \xi (c_1-c_2)} \hat{\varphi}_1(\eta)\overline{\hat{\varphi}_1(\eta/c_2)}|\eta|^{2s_k} d\eta
= (c_1 c_2)^{1/k-1} \int e^{-2\pi i \xi (c_1-c_2)} \hat{\varphi}_1(\eta)\overline{\hat{\varphi}_1(\eta/c_2)}|\eta|^{2s_k} d\eta.
\]
Taking $c_1 = n + 1$ and $c_2 = n$ and $n \to \infty$ we have, by the Riemann-Lebesgue lemma,
\begin{equation}
\lim_{n \to \infty} \langle u_{k,n+1}(\cdot, t), u_{k,n}(\cdot, t) \rangle_{\dot{H}^s_k} = 0;
\end{equation}

since
\[
\|u_{k,c_1}(\cdot, t)\|_{\dot{H}^s_k} = \|u_{k,c_2}(\cdot, t)\|_{\dot{H}^s_k} = \|\varphi_1\|_{\dot{H}^s_k}
\]
we have
\[
\|u_{k,c_1}(\cdot, t) - u_{k,c_2}(\cdot, t)\|_{\dot{H}^s_k} \to 2^{1/2}\|\varphi_1\|_{\dot{H}^s_k} \neq 0.
\]

\textbf{Acknowledgments}

FL would like to thank the Department of Mathematics at UNICAMP for its hospitality while this work was completed and FAPESP for its financial support.

\textbf{References}

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Departamento de Matemática, IMECC-UNICAMP, 13081-970, Campinas, SP, Brasil
E-mail address: hebe@ime.unicamp.br

Instituto de Matemática Pura e Aplicada, 22460-320, Rio de Janeiro, Brasil
E-mail address: linares@impa.br