Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations

Authors:
H. A. Biagioni and F. Linares

Journal:
Trans. Amer. Math. Soc. **353** (2001), 3649-3659

MSC (1991):
Primary 35Q55, 35Q51

DOI:
https://doi.org/10.1090/S0002-9947-01-02754-4

Published electronically:
May 3, 2001

MathSciNet review:
1837253

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Ill-posedness is established for the initial value problem (IVP) associated to the derivative nonlinear Schrödinger equation for data in , . This result implies that best result concerning local well-posedness for the IVP is in . It is also shown that the (IVP) associated to the generalized Benjamin-Ono equation for data below the scaling is in fact ill-posed.

**1.**T. B. Benjamin,*Internal waves of permanent form in fluids of great depth*,*J. Fluid Mech.***29**(1967), 559-592.**2.**B. Birnir, G. Ponce and N. Svanstedt,*The local ill-posedness of the modified KdV equation*,*Ann. Inst. Henri Poincaré***13**No. 4 (1996), 529-535. MR**97e:35152****3.**B. Birnir, C. Kenig, G. Ponce, N. Svanstedt and L. Vega,*On the ill-posedness for the generalized Korteweg-de Vries and nonlinear Schrödinger equations*,*J. London Math. Soc.*(2)**53**(1996), 551-559. MR**97d:35233****4.**Guo Boling and Wu Yaping,*Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation*,*J. Differential Equation***123**(1995), 35-55. MR**96k:35166****5.**J. Bourgain,*Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations*, I, II,*Geom. Funct. Anal.***3**(1993), 107-156, 209-262. MR**95d:35160a**; MR**95d:35160b****6.**N. Hayashi and T. Ozawa,*On the derivative nonlinear Schrödinger equation*,*Phys. D***55**(1992), 14-36. MR**93h:35190****7.**T. Kato,*On the Cauchy problem for the (generalized) Korteweg-de Vries equation*,*Advances in Mathematics Supplementary Studies, Studies in Applied Math.***8**(1983), 93-128. MR**86f:35160****8.**C.E. Kenig, G. Ponce and L. Vega,*The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices*,*Duke Math. J.***71**(1993), 1-21. MR**94g:35196****9.**-,*On the generalized Benjamin-Ono equation*,*Trans. Amer. Math. Soc.***342**(1994), 155-172. MR**94e:35121****10.**-,*A bilinear estimate with applications to the KdV equations*,*J. Amer. Math. Soc.***9**(1996), 573-603. MR**96k:35139****11.**-,*On ill-posedness of some canonical dispersive equations*,*preprint 1999*.**12.**R. J. Iorio, Jr, The Cauchy problem for the Benjamin-Ono equation,*Comm. Partial Differential Equations***11**(1986), 1031-1081. MR**88b:35034****13.**K. Mio, T. Ogino, K. Minami, S. Takeda,*Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas*,*J. Phys. Soc. Japan***41**(1976), 265-271. MR**57:2116****14.**H. Ono,*Algebraic solitary waves in stratified fluids*,*J. Phys. Soc. Japan***39**(1975), 1082-1091. MR**53:2129****15.**T. Ozawa,*On the nonlinear Schrödinger equations of derivative type*,*Indiana Univ. Math. J.***45**(1996), 137-163. MR**98b:35186****16.**T. Ozawa and Y. Tsutsumi,*Space-time estimates for null gauge forms and nonlinear Schrödinger equations*,*Differential Integral Equations***11**(1998), 201-222. MR**2000m:35167****17.**G. Ponce,*On the well posedness of some nonlinear evolution equations*,*Nonlinear waves (Sapporo, 1995)*, Gakuto International Series**10**, (1997), 393-424. MR**99k:35140****18.**-,*On the global well-posedness of the Benjamin-Ono equation*,*Differential Integral Equations***4**(1991), 527-542. MR**92e:35137****19.**H. Takaoka,*Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity*,*Adv. Differential Equations***4**(1999), 561-580. MR**2000e:35221****20.**-,*Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity*,*preprint*(2000).**21.**W. van Saarloos and P. C. Hohenberg,*Fronts, pulses, sources and sinks in generalized Ginzburg-Landau equations*,*Phys. D***56**(1992), 303-367. MR**93k:35195****22.**M. Wadadi, H. Sanuki, K. Konno, Y.-H. Ichikawa,*Circular polarized nonlinear Alfvén waves - a new type of nonlinear evolution equation in plasma physics. Conference on the Theory and Application of Solitons (Tucson, Ariz., 1976)*,*Rocky Mountain J. Math.***8**(1978), 323-331.**23.**M. Weinstein,*Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation*,*Comm. Partial Differential Equations***12**No.10 (1987), 1133-1173. MR**88h:35107**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
35Q55,
35Q51

Retrieve articles in all journals with MSC (1991): 35Q55, 35Q51

Additional Information

**H. A. Biagioni**

Affiliation:
Departamento de Matemática, IMECC-UNICAMP, 13081-970, Campinas, SP, Brasil

Email:
hebe@ime.unicamp.br

**F. Linares**

Affiliation:
Instituto de Matemática Pura e Aplicada, 22460-320, Rio de Janeiro, Brasil

Email:
linares@impa.br

DOI:
https://doi.org/10.1090/S0002-9947-01-02754-4

Keywords:
Ill-posedness,
Schr\"odinger equation,
Benjamin-Ono equation

Received by editor(s):
April 5, 2000

Received by editor(s) in revised form:
July 24, 2000

Published electronically:
May 3, 2001

Article copyright:
© Copyright 2001
American Mathematical Society