Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Group cohomology and gauge equivalence of some twisted quantum doubles


Authors: Geoffrey Mason and Siu-Hung Ng
Journal: Trans. Amer. Math. Soc. 353 (2001), 3465-3509
MSC (2000): Primary 57T05, 16S40, 16W30
DOI: https://doi.org/10.1090/S0002-9947-01-02771-4
Published electronically: April 24, 2001
MathSciNet review: 1837244
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the module category associated to the quantum double of a finite abelian group $G$ twisted by a 3-cocycle, which is known to be a braided monoidal category, and investigate the question of when two such categories are equivalent. We base our discussion on an exact sequence which interweaves the ordinary and Eilenberg-Mac Lane cohomology of $G$. Roughly speaking, this reveals that the data provided by such module categories is equivalent to (among other things) a finite quadratic space equipped with a metabolizer, and also a pair of rational lattices $L\subseteq M$ with $L$ self-dual and integral.


References [Enhancements On Off] (What's this?)

  • [AF92] Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Second ed., Springer-Verlag, New York, 1992. MR 94i:16001
  • [Bor86] Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068-3071. MR 87m:17033
  • [Bro82] Kenneth S. Brown, Cohomology of groups, Springer-Verlag, New York-Berlin, 1982; Corrected reprint, Springer-Verlag, 1994. MR 83k:20002; MR 96a:20072
  • [CP95] Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1995, Corrected reprint of the 1994 original. MR 96h:17014
  • [DL93] Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 95b:17032
  • [DPR92] R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi-Hopf algebras, group cohomology and orbifold models, Integrable systems and quantum groups (Pavia, 1990), World Sci. Publishing, River Edge, NJ, 1992, pp. 75-98. MR 92m:81238
  • [Dri87] V. G. Drinfel'd, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798-820. MR 89f:17017
  • [Dri90] V. G. Drinfel'd, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419-1457. MR 91b:17016
  • [DW90] Robbert Dijkgraaf and Edward Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), no. 2, 393-429. MR 91g:81133
  • [EM50a] Samuel Eilenberg and Saunders Mac Lane, Cohomology theory of Abelian groups and homotopy theory. I, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 443-447. MR 12:350c
  • [EM50b] Samuel Eilenberg and Saunders Mac Lane, Cohomology theory of Abelian groups and homotopy theory. II, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 657-663. MR 12:520a
  • [FHL93] Igor B. Frenkel, Yi Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 94a:17007
  • [FLM88] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Academic Press Inc., Boston, MA, 1988. MR 90h:17026
  • [HL92] Yi Zhi Huang and James Lepowsky, Toward a theory of tensor products for representations of a vertex operator algebra, Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991) (River Edge, NJ), World Sci. Publishing, 1992, pp. 344-354. MR 94k:17045
  • [HL94a] Yi-Zhi Huang and James Lepowsky, Tensor products of modules for a vertex operator algebra and vertex tensor categories, Lie theory and geometry, Birkhäuser Boston, Boston, MA, 1994, pp. 349-383. MR 96e:17061
  • [HL94b] Yi-Zhi Huang and James Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, Surikaisekikenkyusho Kokyuroku (1994), no. 883, 148-203, Geometric aspects of infinite integrable systems (Japanese) (Kyoto, 1993). MR 98a:17048
  • [HL95a] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, II, Selecta Math. (N.S.) 1 (1995), no. 4, 699-756, 757-786. MR 98a:17047
  • [HL95b] Yi-Zhi Huang and James Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. III, J. Pure Appl. Algebra 100 (1995), no. 1-3, 141-171. MR 98a:17049
  • [HO97] Reinhard Häring-Oldenburg, Reconstruction of weak quasi Hopf algebras, J. Algebra 194 (1997), no. 1, 14-35. MR 98h:16062
  • [JS93] André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20-78. MR 94m:18008
  • [Kas95] Christian Kassel, Quantum groups, Springer-Verlag, New York, 1995. MR 96e:17041
  • [Kne70] Manfred Knebusch, Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/70 (1969/1970), 93-157. MR 42:6001
  • [Lam99] T. Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1999. MR 99i:16001
  • [Mac52] Saunders Mac Lane, Cohomology theory of Abelian groups, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., 1952, pp. 8-14. MR 13:529d
  • [Maj92] Shahn Majid, Tannaka-Kre{\u{\i}}\kern.15emn theorem for quasi-Hopf algebras and other results, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), Amer. Math. Soc., Providence, RI, 1992, pp. 219-232. MR 93k:16073
  • [Mas95] Geoffrey Mason, The quantum double of a finite group and its role in conformal field theory, Groups '93 Galway/St. Andrews, Vol. 2, Cambridge Univ. Press, Cambridge, 1995, pp. 405-417. MR 97a:11067
  • [MH73] John Milnor and Dale Husemoller, Symmetric bilinear forms, Springer-Verlag, New York, 1973, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73. MR 58:22129
  • [MS89] Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177-254. MR 90e:81216
  • [Swe69] Moss E. Sweedler, Hopf algebras, W. A. Benjamin, Inc., New York, 1969, Mathematics Lecture Note Series. MR 40:5705
  • [tD79] Tammo tom Dieck, Transformation groups and representation theory, Springer, Berlin, 1979. MR 82c:57025
  • [TY98] Daisuke Tambara and Shigeru Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra 209 (1998), no. 2, 692-707. MR 2000b:18013
  • [Wal63] C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281-298. MR 28:133

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57T05, 16S40, 16W30

Retrieve articles in all journals with MSC (2000): 57T05, 16S40, 16W30


Additional Information

Geoffrey Mason
Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
Email: gem@cats.ucsc.edu

Siu-Hung Ng
Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
Address at time of publication: Department of Mathematics, Towson University, Baltimore, Maryland 21252
Email: rng@towson.edu

DOI: https://doi.org/10.1090/S0002-9947-01-02771-4
Received by editor(s): December 8, 1999
Received by editor(s) in revised form: July 24, 2000
Published electronically: April 24, 2001
Additional Notes: Research of the first author was supported by the National Science Foundation and the Regents of the University of California.
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society