Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The Serre spectral sequence of a multiplicative fibration

Authors: Yves Félix, Stephen Halperin and Jean-Claude Thomas
Journal: Trans. Amer. Math. Soc. 353 (2001), 3803-3831
MSC (2000): Primary 57T25, 55R20, 57T05
Published electronically: April 24, 2001
MathSciNet review: 1837260
Full-text PDF

Abstract | References | Similar Articles | Additional Information


In a fibration $\Omega F \overset{\Omega j}{\rightarrow} \Omega X \overset{\Omega \pi}{\rightarrow}\Omega B$ we show that finiteness conditions on $F$ force the homology Serre spectral sequence with $\mathbb{F} _p$-coefficients to collapse at some finite term. This in particular implies that as graded vector spaces, $H_*(\Omega X)$ is ``almost'' isomorphic to $H_*(\Omega B)\otimes H_*(\Omega F)$. One consequence is the conclusion that $X$ is elliptic if and only if $B$ and $F$ are.

References [Enhancements On Off] (What's this?)

  • 1. D.J. Anick, Hopf algebras up to homotopy, J. of Amer. Math. Soc., 2 (1989), 417-453. MR 90c:16007
  • 2. S. Araki, Steenrod reduced powers in the spectral sequence associated with a fibering, I, II, Mem. Fac. Sci. Kyushu Univ. Ser. A. Math. II (1957), 15-64, 81-97. MR 21:4419
  • 3. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. Math., 57 (1953), 115-207. MR 14:490e
  • 4. A. Borel, Topics in the homology theory of fibre bundles, Lectures Notes in Math., 36 (1967), 1-93. MR 36:4559
  • 5. R. Bott, H. Samelson, On the Pontrjagin product in spaces of paths, Comm. Math. Helv., 27 (1953), 320-337. MR 15:643b
  • 6. W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153-176. MR 26:3061
  • 7. Y. Félix and S. Halperin, Rational $LS$ category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-37. MR 84h:55011
  • 8. Y. Félix, S. Halperin, J.M. Lemaire and J.-C. Thomas, Mod $p$ loop space homology, Invent. Math., 95 (1989), 247-262. MR 89k:55010
  • 9. Y. Félix, S. Halperin, and J.-C. Thomas, Hopf algebras of polynomial growth, Journal of Algebra, 125 (1989), 408-417. MR 90j:16021
  • 10. Y. Félix, S. Halperin and J.-C. Thomas, Elliptic Hopf algebras, J. London Math. Soc., 43 (1991), 545-555. MR 92i:57033
  • 11. Y. Félix, S. Halperin and J.-C. Thomas, Elliptic spaces, Bull. Amer. Math. Soc., 25 (1991), 69-73. MR 92m:55009
  • 12. Y. Félix, S. Halperin and J.-C. Thomas, Adams' Cobar equivalence, Trans. Amer. Math. Soc., 329 (1992), 531-549. MR 92e:55007
  • 13. Y. Félix, S. Halperin and J.-C. Thomas, Torsion in loop space homology, J. Reine Angew. Math., 432 (1992), 77-92. MR 93i:55012
  • 14. Y. Félix, S. Halperin and J.-C. Thomas, The category of a map and the grade of a module, Israel J. of Math., 78 (1992), 177-196. MR 94e:55021
  • 15. Y. Félix, S. Halperin and J.-C. Thomas, Elliptic spaces II, Enseignement Mathématique, 39 (1993), 25-32. MR 94f:55008
  • 16. Y. Félix and J.-C. Thomas, Module d'holonomie d'une fibration, Bull. Soc. Math. France, 113 (1985), 255-258. MR 87i:55022
  • 17. T. Ganea, A generalization of the homology and the homotopy suspension, Comm. Math. Helv., 39 (1965), 295-322. MR 31:4033
  • 18. P. Goerss, J. Lannes and F. Morel, Vecteurs de Witt non commutatifs et représentabilité de l'homologie modulo $p$, Invent. Math. 108 (1992), 163-227. MR 93e:55014
  • 19. S. Halperin, Rational fibrations, minimal models and fiberings of homogeneous spaces, Trans. Amer. Math. Soc., 244 (1978), 199-224. MR 58:24264
  • 20. S. Halperin, Universal enveloping algebras and loop space homology, J. Pure and Applied Algebra, 83 (1992), 237-282. MR 93k:55014
  • 21. J. Lannes and L. Schwartz, A propos des conjectures de Serre et Sullivan, Invent. Math., 83 (1986), 593-603. MR 87f:55009
  • 22. J.P. Lin, Torsion in $H$-spaces, I, Annals of Math., 103 (1976), 457-487. MR 54:13911
  • 23. J. McCleary, User's guide to spectral sequences, (1985), Publish or Perish, Inc. Math. Lect., Series 12. MR 87f:55014
  • 24. J. McCleary, Homotopy theory and closed geodesics, in Homotopy theory and related topics, Proceedings, Kinosaki, 1988, M. Mimura editor, Lecture Notes in Mathematics 1418 (1990) Springer-Verlag, 86-94. MR 91e:57060
  • 25. C.A. McGibbon and C.W. Wilkerson, Loop spaces of finite complexes at large primes, Proc. of the Amer. Math. Soc., 96 (1986), 698-702. MR 87h:55015
  • 26. J. Milnor, Construction of universal bundles, I, Annals of Math., 63 (1958), 272-284. MR 17:994b
  • 27. J. Milnor and J.C. Moore, The structure of Hopf algebras, Annals of Math., 81 (1965), 211-264. MR 30:4259
  • 28. M. Mimura and H. Toda, Topology of Lie groups, I and II, Translations of Mathematical Monographs, 91, American Mathematical Society, 1991. MR 92h:55001
  • 29. J.C. Moore and L. Smith, Hopf algebras and multiplicative fibrations, I, Amer. J. Math., 90 (1968), 752-780. MR 38:2772
  • 30. J.C. Moore and L. Smith, Hopf algebras and multiplicative fibrations, II, Amer. J. Math., 90 (1968), 1113-1150. MR 38:6599
  • 31. J.P. Serre, Homologie singulière des espaces fibrés. Applications, Annals of Math., 54 (1951), 425-505. MR 13:574g
  • 32. J.P. Serre, Cohomologie modulo $2$ des complexes d'Eilenberg-MacLane, Comm. Math. Helv., 27 (1953), 198-232. MR 15:643c
  • 33. W.M. Singer, Extension theory for connected Hopf algebras, J. Algebra, 21 (1972), 1-16. MR 47:8597
  • 34. L. Smith, The cohomology of stable two stage Posnikov systems, Illinois J. of Math., 11 (1967), 310-329. MR 34:8406
  • 35. R. Vázquez Garcia, Note on Steenrod squares in the spectral sequence of a fibre space, Bol. Soc. Math Mexicana, 2 (1957), 1-8. MR 19:973d
  • 36. G.W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, 61, Springer-Verlag, 1978. MR 80b:55001

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57T25, 55R20, 57T05

Retrieve articles in all journals with MSC (2000): 57T25, 55R20, 57T05

Additional Information

Yves Félix
Affiliation: Institut de Mathématiques, Université de Louvain-la-Neuve, B-1348 Louvain-la- Neuve, Belgium

Stephen Halperin
Affiliation: College of Computer, Mathematical and Physical Sciences, University of Maryland, College Park, Maryland 20742-3281

Jean-Claude Thomas
Affiliation: Faculté des Sciences, Université d’Angers, 49045 bd Lavoisier, Angers, France

Keywords: Multiplicative fibration, loop space, Hopf algebra, Serre spectral sequences, elliptic space
Received by editor(s): January 30, 1998
Published electronically: April 24, 2001
Additional Notes: Research of the second author was partially supported by an NSERC operating grant. Research of the first and third authors was partially supported by UMR-6093 au CNRS
This work was also partially supported by a NATO travel grant held by all three authors.
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society