Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the inverse spectral theory of Schrödinger and Dirac operators


Author: Miklós Horváth
Journal: Trans. Amer. Math. Soc. 353 (2001), 4155-4171
MSC (1991): Primary 34A55, 34B20; Secondary 34L40, 47A75
DOI: https://doi.org/10.1090/S0002-9947-01-02765-9
Published electronically: May 17, 2001
MathSciNet review: 1837225
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We prove that under some conditions finitely many partially known spectra and partial information on the potential entirely determine the potential. This extends former results of Hochstadt, Lieberman, Gesztesy, Simon and others.


References [Enhancements On Off] (What's this?)

  • 1. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78 (1946), 1-96. MR 7:382d
  • 2. G. Borg, Uniqueness theorems in the spectral theory of $y''+(\lambda-q(x))y=0$, Proc. 11th Scandinavian Congress of Mathematicians, Johan Grundt Tanums Forlag, Oslo, 1952, pp. 276-287. MR 15:315a
  • 3. F. Gesztesy, R. del Rio and B. Simon, Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions, Intl. Math. Research Notices 15 (1997), 751-758. MR 99a:34032
  • 4. F. Gesztesy, R. del Rio and B. Simon, Corrections and Addendum to ``Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions'', Intl. Math. Research Notices 11 (1999), 623-625. MR 2000d:34025
  • 5. F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum, Trans. Amer. Math. Soc. 352 (2000), 2765-2787. MR 2000j:34019
  • 6. F. Gesztesy and B. Simon, On the determination of the potential from three spectra, Trans. Amer. Math. Soc. 189(2) (1999), 85-92. MR 2000i:34026
  • 7. H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math. 34 (1978), 676-680. MR 57:10077
  • 8. N. Levinson, Gap and density theorems, AMS Coll. Publ., 1940, New York. MR 2:180d
  • 9. B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators (in Russian), Nauka, Moscow 1988; English transl. MR 92i:34119
  • 10. B. M. Levitan and I. S. Sargsjan, Introduction to spectral theory (in Russian), Nauka, Moscow 1970. MR 33:4362
  • 11. B. Ja. Levin, Distribution of zeros of entire functions (in Russian), GITTL, Moscow 1956. MR 19:402c
  • 12. V.A. Marchenko, Certain problems in the theory of second order differential operators (in Russian), Dokl. Akad. Nauk. SSSR, 72 (1950), 457-460.
  • 13. B.A. Watson, Inverse spectral problems for weighted Dirac systems, Inverse Problems, 15(3) (1999), 793-805. MR 2000d:34184

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34A55, 34B20, 34L40, 47A75

Retrieve articles in all journals with MSC (1991): 34A55, 34B20, 34L40, 47A75


Additional Information

Miklós Horváth
Affiliation: Budapest University of Technology and Economics, Institute of Mathematics, H 1111 Budapest, Műegyetem rkp. 3-9, Hungary
Email: horvath@math.bme.hu

DOI: https://doi.org/10.1090/S0002-9947-01-02765-9
Keywords: Inverse spectral theory, $m$-function, spectral function
Received by editor(s): February 16, 2000
Received by editor(s) in revised form: June 7, 2000
Published electronically: May 17, 2001
Additional Notes: Research supported by the Hungarian NSF Grant OTKA T#32374
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society