Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the relation between upper central quotients and lower central series of a group


Author: Graham Ellis
Journal: Trans. Amer. Math. Soc. 353 (2001), 4219-4234
MSC (2000): Primary 20F14, 20F12
DOI: https://doi.org/10.1090/S0002-9947-01-02812-4
Published electronically: June 6, 2001
MathSciNet review: 1837229
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Let $H$ be a group with a normal subgroup $N$ contained in the upper central subgroup $Z_cH$. In this article we study the influence of the quotient group $G=H/N$ on the lower central subgroup $\gamma_{c+1}H$. In particular, for any finite group $G$ we give bounds on the order and exponent of $\gamma_{c+1}H$. For $G$ equal to a dihedral group, or quaternion group, or extra-special group we list all possible groups that can arise as $\gamma_{c+1}H$. Our proofs involve: (i) the Baer invariants of $G$, (ii) the Schur multiplier $\mathcal{M}(L,G)$ of $G$ relative to a normal subgroup $L$, and (iii) the nonabelian tensor product of groups. Some results on the nonabelian tensor product may be of independent interest.


References [Enhancements On Off] (What's this?)

  • 1. Baer,R.: Representations of groups as quotient groups, I, II, and III. Trans. Amer. Math. Soc. 58, 295-419 (1945) MR 7:371h; MR 7:372a; MR 7:372b
  • 2. Bacon,M.R. Kappe,L.-C.: The nonabelian tensor square of a $2$-generator $p$-group of class $2$. Archiv Math. 61, 508-516 (1993) MR 95h:20041
  • 3. Beyl,F.R., Tappe,J.: Group extensions, representations, and the Schur multiplicator. Lecture Notes in Mathematics 958, Springer (1982) MR 84f:20002
  • 4. Brown,R. Johnson,D.L. Robertson,E.F.: Some computations of nonabelian tensor products of groups. J. Algebra 111, 177-202 (1987) MR 88m:20071
  • 5. Brown,R. Loday,J.-L.: Van Kampen theorems for diagrams of spaces. Topology 26, 311-335 (1987) MR 88m:55008
  • 6. Burns,J., Ellis,G.: On the nilpotent multipliers of a group. Math. Z. 226, 405-428 (1997) MR 98h:20050
  • 7. Burns,J., Ellis,G.: Inequalities for Baer invariants of finite groups. Canad. Math. Bull. 41 385-391 (1998) MR 99i:20028
  • 8. Burns,J., Ellis,G., MacHale,D., Ó'Murchú,P., Sheey,R., Wiegold,J.: Lower central series of groups with small upper central factors. Proc. Roy. Irish Acad. Sect. A 97, 113-122 (1997) MR 99g:20061
  • 9. Ellis,G.: On groups with a finite nilpotent upper central quotient. Archiv Math. 69, 1-8 (1997) MR 99a:20033
  • 10. Ellis,G.: The Schur multiplier of a pair of groups. Appl. Categ. Structures 6, no. 3, 355-371 (1998) MR 99h:20086
  • 11. Ellis,G.: A bound for the derived and Frattini subgroups of a prime-power group. Proc. Amer. Math. Soc. 126, No. 9, 2513-2523 (1998) MR 98k:20028
  • 12. Ellis,G.: On the computation of certain homotopical functors. LMS J. Comput. Math. 1, 25-41 (1998) MR 99f:55002
  • 13. Ellis,G., McDermott,A.: Tensor products of prime-power groups. J. Pure Appl. Algebra 132, no. 2, 119-128 (1998) MR 99g:20049
  • 14. Frölich,A.: Baer invariants of algebras. Trans. Amer. Math. Soc. 109, 221-244 (1962)
  • 15. Gaschütz,W., Neubüser,J., and Yen,Ti.: Über den Multiplikator von $p$-Gruppen. Math. Z., 100, 93-96 (1967) MR 36:272
  • 16. Gupta,N.D., Moghaddam,M.R.R.: Higher Schur-multiplicators of nilpotent dihedral groups. C.R. Math. Rep. Acad. Sci. Canada, Vol. 14, no. 5, 225-230 (1993) MR 94f:20070
  • 17. Green,J.A.: On the number of automorphisms of a finite group. Proc. Royal Soc. A 237, 574-581 (1956) MR 18:464c
  • 18. Hall,P.: The Edmonton notes on nilpotent groups. Queen Mary College Mathematics Notes. (1969) MR 44:316
  • 19. Jones,M.R.: Multiplicators of $p$-groups. Math. Z. 127, 165-166 (1972) MR 47:6851
  • 20. Jones,M.R.: Some inequalities for the multiplicator of a finite group. Proc. Amer. Math. Soc. 39, 450-456 (1973) MR 47:3524
  • 21. Jones,M.R.: Some inequalities for the multiplicator of a finite group II. Proc. Amer. Math. Soc. 45, 167-172 (1974) MR 50:4741
  • 22. Loday,J.-L.: Cohomologie et groupes de Steinberg relatifs. J. Algebra 54, 178-202 (1978) MR 80b:18013
  • 23. Lubotzky,A., Mann,A.: Powerful $p$-groups I. Finite groups. J. Algebra 105, no. 2, 484-505 (1987) MR 88f:20045
  • 24. Lue,A.-S.T.: The Ganea map for nilpotent groups. J. London Math. Soc. 14, 309-312 (1976) MR 55:3110
  • 25. MacDonald,J.L.: Group derived functors. J. Algebra 10, 448-477 (1968) MR 40:205
  • 26. MacHale,D, Ó'Murchú,P.: Commutator subgroups of groups with small central factor groups. Proc. Roy. Irish Acad. Sect. A 93, no. 1, 123-129 (1993) MR 95b:20058
  • 27. Magnus,W., Karrass,A., Solitar,D.: Combinatorial Group Theory. New York (1976) MR 54:10423
  • 28. Mashayekhy,B., Moghaddam,M.R.R.: Higher Schur-multiplicator of a finite abelian group. Algebra Colloquim 4:3, 317-322 (1997) MR 2000a:20079
  • 29. Wiegold,J.: Multiplicators and groups with finite central factor groups. Math. Z. 89, 345-347 (1965) MR 31:3510
  • 30. Wiegold,J.: Commutator subgroups of finite $p$-groups. J. Australian Math. Soc., 10, 480-484 (1969) MR 41:3606

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20F14, 20F12

Retrieve articles in all journals with MSC (2000): 20F14, 20F12


Additional Information

Graham Ellis
Affiliation: Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, Bonn, Germany
Address at time of publication: Department of Mathematics, National University of Ireland, Galway, Ireland
Email: graham.ellis@nuigalway.ie

DOI: https://doi.org/10.1090/S0002-9947-01-02812-4
Received by editor(s): February 12, 1999
Published electronically: June 6, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society