Peripheral splittings of groups

Author:
B. H. Bowditch

Journal:
Trans. Amer. Math. Soc. **353** (2001), 4057-4082

MSC (2000):
Primary 20F67, 20E08

Published electronically:
June 1, 2001

MathSciNet review:
1837220

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We define the notion of a ``peripheral splitting'' of a group. This is essentially a representation of the group as the fundamental group of a bipartite graph of groups, where all the vertex groups of one colour are held fixed--the ``peripheral subgroups''. We develop the theory of such splittings and prove an accessibility result. The theory mainly applies to relatively hyperbolic groups with connected boundary, where the peripheral subgroups are precisely the maximal parabolic subgroups. We show that if such a group admits a non-trivial peripheral splitting, then its boundary has a global cut point. Moreover, the non-peripheral vertex groups of such a splitting are themselves relatively hyperbolic. These results, together with results from elsewhere, show that under modest constraints on the peripheral subgroups, the boundary of a relatively hyperbolic group is locally connected if it is connected. In retrospect, one further deduces that the set of global cut points in such a boundary has a simplicial treelike structure.

**[AN]**S. A. Adeleke and Peter M. Neumann,*Relations related to betweenness: their structure and automorphisms*, Mem. Amer. Math. Soc.**131**(1998), no. 623, viii+125. MR**1388893**, 10.1090/memo/0623**[BeF]**Mladen Bestvina and Mark Feighn,*Bounding the complexity of simplicial group actions on trees*, Invent. Math.**103**(1991), no. 3, 449–469. MR**1091614**, 10.1007/BF01239522**[BeM]**Mladen Bestvina and Geoffrey Mess,*The boundary of negatively curved groups*, J. Amer. Math. Soc.**4**(1991), no. 3, 469–481. MR**1096169**, 10.1090/S0894-0347-1991-1096169-1**[Bo1]**B. H. Bowditch,*Geometrical finiteness with variable negative curvature*, Duke Math. J.**77**(1995), no. 1, 229–274. MR**1317633**, 10.1215/S0012-7094-95-07709-6**[Bo2]**Jian-yi Shi,*Left cells in the affine Weyl group of type ̃𝐹₄*, J. Algebra**200**(1998), no. 1, 173–206. MR**1603270**, 10.1006/jabr.1997.7043**[Bo3]**B. H. Bowditch,*Treelike structures arising from continua and convergence groups*, Mem. Amer. Math. Soc.**139**(1999), no. 662, viii+86. MR**1483830**, 10.1090/memo/0662**[Bo4]**B. H. Bowditch,*Connectedness properties of limit sets*, Trans. Amer. Math. Soc.**351**(1999), no. 9, 3673–3686. MR**1624089**, 10.1090/S0002-9947-99-02388-0**[Bo5]**B.H. Bowditch,*Relatively hyperbolic groups*, preprint, Southampton (1997).**[Bo6]**B. H. Bowditch,*Boundaries of geometrically finite groups*, Math. Z.**230**(1999), no. 3, 509–527. MR**1680044**, 10.1007/PL00004703**[BoS]**B.H. Bowditch, G.A. Swarup,*Cut points in the boundaries of hyperbolic groups*, in preparation.**[DiD]**Warren Dicks and M. J. Dunwoody,*Groups acting on graphs*, Cambridge Studies in Advanced Mathematics, vol. 17, Cambridge University Press, Cambridge, 1989. MR**1001965****[Du1]**M. J. Dunwoody,*Cutting up graphs*, Combinatorica**2**(1982), no. 1, 15–23. MR**671142**, 10.1007/BF02579278**[Du2]**M. J. Dunwoody,*The accessibility of finitely presented groups*, Invent. Math.**81**(1985), no. 3, 449–457. MR**807066**, 10.1007/BF01388581**[Du3]**M. J. Dunwoody,*Groups acting on protrees*, J. London Math. Soc. (2)**56**(1997), no. 1, 125–136. MR**1462830**, 10.1112/S0024610797005322**[Du4]**M. J. Dunwoody,*Folding sequences*, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 139–158 (electronic). MR**1668347**, 10.2140/gtm.1998.1.139**[Gr]**M. Gromov,*Hyperbolic groups*, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR**919829**, 10.1007/978-1-4613-9586-7_3**[Gu]**D.P. Guralnik,*Constructing a splitting-tree for a cusp-finite group acting on a Peano continuum*(Hebrew) : M.Sc. Dissertation, Technion, Haifa (1998).**[H]**André Haefliger,*Complexes of groups and orbihedra*, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 504–540. MR**1170375****[K]**John L. Kelley,*General topology*, Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]; Graduate Texts in Mathematics, No. 27. MR**0370454****[Sh]**Marlow Sholander,*Trees, lattices, order, and betweenness*, Proc. Amer. Math. Soc.**3**(1952), 369–381. MR**0048405**, 10.1090/S0002-9939-1952-0048405-5**[Swa]**G. A. Swarup,*On the cut point conjecture*, Electron. Res. Announc. Amer. Math. Soc.**2**(1996), no. 2, 98–100 (electronic). MR**1412948**, 10.1090/S1079-6762-96-00013-3**[Swe]**E.L. Swenson,*A cutpoint tree for a continuum*, in ``Computational and Geometric Aspects of Modern Algebra'', London Math. Soc. Lecture Note Series, No. 275, (M. Atkinson, N. Gilbert, J. Howie, S. Linton, E. Robertson, eds.), Cambridge University Press (2000), 254-265. CMP**2001:01****[T]**Pekka Tukia,*Conical limit points and uniform convergence groups*, J. Reine Angew. Math.**501**(1998), 71–98. MR**1637829**, 10.1515/crll.1998.081**[W]**L. E. Ward Jr.,*Axioms for cutpoints*, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 327–336. MR**619058**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20F67,
20E08

Retrieve articles in all journals with MSC (2000): 20F67, 20E08

Additional Information

**B. H. Bowditch**

Affiliation:
Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, Great Britain

Email:
bhb@maths.soton.ac.uk

DOI:
https://doi.org/10.1090/S0002-9947-01-02835-5

Received by editor(s):
November 19, 1999

Received by editor(s) in revised form:
January 31, 2001

Published electronically:
June 1, 2001

Article copyright:
© Copyright 2001
American Mathematical Society