Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Spherical classes and the Lambda algebra

Author: Nguyen H. V. Hu'ng
Journal: Trans. Amer. Math. Soc. 353 (2001), 4447-4460
MSC (2000): Primary 55P47, 55Q45, 55S10, 55T15.
Published electronically: May 22, 2001
MathSciNet review: 1851178
Full-text PDF

Abstract | References | Similar Articles | Additional Information


Let $\Gamma^{\wedge}= \bigoplus_k \Gamma_k^{\wedge}$ be Singer's invariant-theoretic model of the dual of the lambda algebra with $ H_k(\Gamma^{\wedge})\cong Tor_k^{\mathcal{A}}(\mathbb{F} _2, \mathbb{F} _2)$, where $\mathcal{A}$ denotes the mod 2 Steenrod algebra. We prove that the inclusion of the Dickson algebra, $D_k$, into $\Gamma_k^{\wedge}$ is a chain-level representation of the Lannes-Zarati dual homomorphism

\begin{displaymath}\varphi_k^*: \mathbb{F} _2\underset{\mathcal{A}}{\otimes} D_k... ..._k(\mathbb{F} _2, \mathbb{F} _2) \cong H_k(\Gamma^{\wedge})\,. \end{displaymath}

The Lannes-Zarati homomorphisms themselves, $\varphi_k$, correspond to an associated graded of the Hurewicz map

\begin{displaymath}H:\pi_*^s(S^0)\cong \pi_*(Q_0S^0)\to H_*(Q_0S^0)\,. \end{displaymath}

Based on this result, we discuss some algebraic versions of the classical conjecture on spherical classes, which states that Only Hopf invariant one and Kervaire invariant one classes are detected by the Hurewicz homomorphism. One of these algebraic conjectures predicts that every Dickson element, i.e. element in $D_k$, of positive degree represents the homology class $0$ in $Tor^{\mathcal{A}}_k(\mathbb{F} _2,\mathbb{F} _2)$ for $k>2$.

We also show that $\varphi_k^*$ factors through $\Fd\underset{\mathcal{A}}{\otimes} Ker\partial_k$, where $\partial_k : \Gamma^{\wedge}_k \to \Gamma^{\wedge}_{k-1}$ denotes the differential of $\Gamma^{\wedge}$. Therefore, the problem of determining $\mathbb{F} _2 \underset{\mathcal{A}}{\otimes} Ker\partial_k$ should be of interest.

References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960), 20-104. MR 25:4530
  • 2. J. F. Adams, Operations of the nth kind in $K$-theory and what we don't know about $ RP^{\infty}$, New developments in topology, G. Segal (ed.), London Math. Soc. Lect. Note Series 11 (1974), 1-9. MR 49:3941
  • 3. A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, J. W. Schlesinger, The mod $p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342. MR 33:8002
  • 4. W. Browder, The Kervaire invariant of a framed manifold and its generalization, Ann. Math. 90 (1969), 157-186. MR 40:4963
  • 5. E. B. Curtis, The Dyer-Lashof algebra and the $\Lambda$-algebra, Illinois Jour. Math. 19 (1975), 231-246. MR 51:14054
  • 6. L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-98. CMP 95:18
  • 7. P. G. Goerss, Unstable projectives and stable $\operatorname{Ext}:$ with applications, Proc. London Math. Soc. 53 (1986), 539-561. MR 88d:55011
  • 8. N. H. V. Hu'ng, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997), 3893-3910. MR 98e:55020
  • 9. N. H. V. Hu'ng, Spherical classes and the homology of the Steenrod algebra, Vietnam Jour. Math. 26 (1998), 373-377.
  • 10. N. H. V. Hu'ng, The weak conjecture on spherical classes, Math. Zeit. 231 (1999), 727-743. MR 2000g:55019
  • 11. N. H. V. Hu'ng and F. P. Peterson, Spherical classes and the Dickson algebra, Math. Proc. Camb. Phil. Soc. 124 (1998), 253-264. MR 99i:55021
  • 12. J. Lannes, Sur le $n$-dual du $n$-ème spectre de Brown-Gitler, Math. Zeit. 199 (1988), 29-42. MR 89h:55020
  • 13. J. Lannes and S. Zarati, Invariants de Hopf d'ordre supérieur et suite spectrale d'Adams, C. R. Acad. Sci. 296 (1983), 695-698. MR 85a:55009
  • 14. J. Lannes and S. Zarati, Sur les foncteurs dérivés de la déstabilisation, Math. Zeit. 194 (1987), 25-59. MR 88j:55014
  • 15. S. Mac Lane, Homology, Die Grundlehren der Math. Wissenschaften, Band 114, Academic Press, Springer-Verlag, Berlin and New York, 1963. MR 28:122
  • 16. I. Madsen, On the action of the Dyer-Lashof algebra in $H_*(G)$, Pacific Jour. Math. 60 (1975), 235-275. MR 52:9228
  • 17. H. Mùi, Modular invariant theory and cohomology algebras of symmetric groups, Jour. Fac. Sci. Univ. Tokyo, 22 (1975), 310-369. MR 54:10440
  • 18. S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60. MR 42:346
  • 19. D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986. MR 87j:55003
  • 20. W. M. Singer, Invariant theory and the lambda algebra, Trans. Amer. Math. Soc. 280 (1983), 673-693. MR 85e:55029
  • 21. W. M. Singer, The transfer in homological algebra, Math. Zeit. 202 (1989), 493-523. MR 90i:55035
  • 22. V. Snaith and J. Tornehave, On $\pi_*^S(BO)$ and the Arf invariant of framed manifolds, Amer. Math. Soc. Contemporary Math. 12 (1982), 299-313. MR 83k:55008
  • 23. R. J. Wellington, The unstable Adams spectral sequence of free iterated loop spaces, Memoirs Amer. Math. Soc. 258 (1982). MR 83c:55028
  • 24. C. Wilkerson, Classifying spaces, Steenrod operations and algebraic closure, Topology 16 (1977), 227-237. MR 56:1307

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55P47, 55Q45, 55S10, 55T15.

Retrieve articles in all journals with MSC (2000): 55P47, 55Q45, 55S10, 55T15.

Additional Information

Nguyen H. V. Hu'ng
Affiliation: Department of Mathematics, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Hanoi, Vietnam

Keywords: Spherical classes, loop spaces, Adams spectral sequences, Steenrod algebra, lambda algebra, invariant theory, Dickson algebra.
Received by editor(s): February 4, 1999
Received by editor(s) in revised form: November 4, 1999
Published electronically: May 22, 2001
Additional Notes: The research was supported in part by the National Research Project, No. 1.4.2.
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society