representations and combinatorial identities

Author:
Amitai Regev

Journal:
Trans. Amer. Math. Soc. **353** (2001), 4371-4404

MSC (2000):
Primary 20C32

DOI:
https://doi.org/10.1090/S0002-9947-01-02772-6

Published electronically:
June 14, 2001

MathSciNet review:
1851175

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For various probability measures on the space of the infinite standard Young tableaux we study the probability that in a random tableau, the entry equals a given number . Beside the combinatorics of finite standard tableaux, the main tools here are from the Vershik-Kerov character theory of . The analysis of these probabilities leads to many explicit combinatorial identities, some of which are related to hypergeometric series.

**[BR]**A. Berele and A. Regev,*Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras*, Adv. Math.**64**(1987), 118-175. MR**88i:20006****[B]**A.M. Borodin,*Multiplicative central measure on Schur graph*, Zap. Nauc. Sem. POMI**240**(199), 44-52 (Russian). English translation in*J. Math. Sci.***96**(1999), 3472-3477. MR**2000g:43001****[HH]**P. Hoffman and J.F. Humphreys,*Projective Representation of the Symmetric Groups*, Oxford Mathematical Monographs, 1992. MR**94f:20047****[I]**V.N Ivanov,*Dimensions of skew shifted Young diagrams and projective characters of the infinite symmetric group*, Zap. Nauc. Sem. POMI**240**(1997), 116-136 (Russian). English translation in*J. Math. Sci.***96**(1999), 3517-3530. MR**2000j:05124****[J]**G.D. James,*The Representation Theory of the Symmetric Groups*, Springer Lecture Notes in Mathematics**682**(1978). MR**80g:20019****[K]**S. Kerov,*Anisotropic Young diagrams and Jack symmetric functions*, Funct. Anal. Appl.**34**(2000), 41-51. CMP**2000:12****[KOV]**S. Kerov, G. Olshanski and A. Vershik,*Harmonic analysis on the infinite symmetric group. A deformation of the regular representation*, C.R. Acad. Sci. Paris, Ser. I, Math.**316**(8) (1993), 773-778. MR**94e:20019****[M]**I.G. Macdonald,*Symmetric Functions and Hall Polynomials*, Edition, Oxford, 1995. MR**96h:05207****[M1]**I.G. Macdonald, Private letter.**[N]**M. Nazarov,*Projective representation of the infinite symmetric group*, Representation Theory and Dynamical Systems (A. M. Vershik, editor), Advances in Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 115-130. MR**93j:20032****[O]**G. Olshanski,*Point processes and the infinite symmetric group. Part I: The general formalism and the density function*, Preprint, math.RT/9804086, 1998. To appear.**[R]**A. Regev,*Asymptotics of degrees of some**-subregular representations*, Isr. J. Math.**113**(1999), 15-28. MR**2001b:05226****[S]**I. Schur,*Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare substitutionen*, J. Reine Angew. Math.**139**(1911), 155-250.**[T]**E. Thoma,*Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe*, Math. Zeitschr.**85**(1964), 40-61. MR**30:3382****[VK1]**A.M. Vershik and S.V. Kerov,*Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux*, Dokl. Akad. Nauk SSSR**233**(1977), 1024-1027; English transl., Soviet Math. Dokl.**18**(1977), 527-531. MR**58:562****[VK2]**A.M. Vershik and S. Kerov,*Asymptotics of maximal and typical dimensions of irreducible representations of the symmetric group*, Funkts. Anal. Prilozhen**19**(1985), 25-36; English transl., Funct. Anal. Appl.**19**(1985), 21-31. MR**86k:11051****[VK3]**A.M Vershik and S. Kerov,*Asymptotic theory of characters of the symmetric group*, Funct. Anal. Appl.**15**(1981), 246-255. MR**84a:22016****[Z]**D. Zeilberger, Shalosh, Private communication.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20C32

Retrieve articles in all journals with MSC (2000): 20C32

Additional Information

**Amitai Regev**

Affiliation:
Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel - and - Department of Mathematics, Pennsylvania State University, State College, Pennsylvania 16802

Address at time of publication:
Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

Email:
regev@wisdom.weizmann.ac.il

DOI:
https://doi.org/10.1090/S0002-9947-01-02772-6

Received by editor(s):
March 14, 1999

Published electronically:
June 14, 2001

Additional Notes:
This work was partially supported by ISF grant 6629/1

Article copyright:
© Copyright 2001
American Mathematical Society