Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the semisimplicity conjecture and Galois representations

Author: Lei Fu
Journal: Trans. Amer. Math. Soc. 353 (2001), 4357-4369
MSC (1991): Primary 14F20, 14G15
Published electronically: June 21, 2001
MathSciNet review: 1851174
Full-text PDF

Abstract | References | Similar Articles | Additional Information


The semisimplicity conjecture says that for any smooth projective scheme $X_0$ over a finite field $\mathbf{F}_q$, the Frobenius correspondence acts semisimply on $H^i(X\otimes_{\mathbf{ F}_q} \mathbf{ F}, \overline{\mathbf{ Q}}_l)$, where $\mathbf{ F}$ is an algebraic closure of $\mathbf{ F}_q$. Based on the works of Deligne and Laumon, we reduce this conjecture to a problem about the Galois representations of function fields. This reduction was also achieved by Laumon a few years ago (unpublished).

References [Enhancements On Off] (What's this?)

  • [BBD] A. Beilinson, J. Bernstein and P. Deligne, Faiseaux Pervers, in Analyse et Topologie sur les Espace Singuliers (I), Astérisque 100 (1982). MR 86g:32015
  • [D1] P. Deligne, La Conjecture de Weil II, Publ. Math. IHES, 52 (1980), 137-252. MR 83c:14017
  • [D2] P. Deligne, Les Constantes des Équations Fontionnelles des Fontions L, in Modular Functions of One Variable, II, Lecture Notes in Mathematics, 349, Springer-Verlag (1973), 55-106. MR 52:8091
  • [D3] P. Deligne, Décompositions dans la Catégorie Dérivée, in Motives, Proceedings of Symposia in Pure Mathematics, Vol. 55, Part 1, American Mathematical Society, Providence (1994), 115-128. MR 95h:18013
  • [F] L. Fu, On the Semisimplicity of Pure Sheaves, Proc. Amer. Math. Soc., 127 (1999), No. 9, 2529-2533. MR 2000a:14021
  • [K] N. Katz, Travaux de Laumon, Séminaire Bourbaki, 1987-1988, No. 691, Astérisque 161-162 (1988), 105-132. MR 90h:14028
  • [L] G. Laumon, Transformation de Fourier, Constantes d'Équations Fontionnelles, et Conjecture de Weil, Publ. Math. IHES, 65 (1987), 131-210. MR 88g:14019
  • [ST] J.-P. Serre and J. Tate, Good Reduction of Abelian Varieties, Ann. of Math., 88 (1968), 492-517. MR 38:4488
  • [SGA] Séminaire de Géométrie Algébrique du Bois-Marie.
  • [SGA4] Théorie des Topos et Cohomologie Étale des Schémas, by M. Artin, A. Grothendieck and J.-L. Verdier, Lecture Notes in Mathematics, 269, 270, 305, Springer-Verlag, 1972, 1973. MR 50:7130; MR 50:7131; MR 50:7132
  • [SGA4$\frac12$] Cohomologie Étale, by P. Deligne, Lecture Notes in Mathematics, 569, Springer-Verlag, 1977. MR 57:3132
  • [SGA7] Groupes de Monodromie en Géométrie Algébrique, I by A. Grothendieck, II by P. Deligne and N. Katz, Lecture Notes in Mathematics, 288, 340, Springer-Verlag, 1972, 1973. MR 50:7134; MR 50:7135

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14F20, 14G15

Retrieve articles in all journals with MSC (1991): 14F20, 14G15

Additional Information

Lei Fu
Affiliation: Institute of Mathematics, Nankai University, Tianjin, P. R. China

Keywords: $F$-semisimple representations, puncturely pure sheaves, $l$-adic Fourier transformations, perverse sheaves
Received by editor(s): November 5, 1999
Published electronically: June 21, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society