Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Boundedness and differentiability for nonlinear elliptic systems


Author: Jana Björn
Journal: Trans. Amer. Math. Soc. 353 (2001), 4545-4565
MSC (2000): Primary 35J70; Secondary 35B35, 35B65, 35D10, 35J60, 35J85
Published electronically: May 9, 2001
MathSciNet review: 1851183
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the elliptic system $\operatorname{div} (\mathcal{A}^j (x,u,\nabla u)) = \mathcal{B}^j (x,u,\nabla u)$, $j=1,\ldots,N,$and an obstacle problem for a similar system of variational inequalities. The functions $\mathcal{A}^j$ and $\mathcal{B}^j$ satisfy certain ellipticity and boundedness conditions with a $p$-admissible weight $w$ and exponent $1<p\le2$. The growth of $\mathcal{B}^j$ in $\vert\nabla u\vert$ and $\vert u\vert$ is of order $p-1$. We show that weak solutions of the above systems are locally bounded and differentiable almost everywhere in the classical sense.


References [Enhancements On Off] (What's this?)

  • 1. E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: the case 1<𝑝<2, J. Math. Anal. Appl. 140 (1989), no. 1, 115–135. MR 997847, 10.1016/0022-247X(89)90098-X
  • 2. J. Björn, $L^q$-differentials for weighted Sobolev spaces, Michigan Math. J. 47 (2000), 151-161. MR 20001b:46849
  • 3. J. Björn, Poincaré inequalities for powers and products of admissible weights, Ann. Acad. Sci. Fenn. Math. 26 (2001), 175-188.
  • 4. Bogdan Bojarski, Pointwise differentiability of weak solutions of elliptic divergence type equations, Bull. Polish Acad. Sci. Math. 33 (1985), no. 1-2, 1–6 (English, with Russian summary). MR 798721
  • 5. Ennio De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. (4) 1 (1968), 135–137 (Italian). MR 0227827
  • 6. Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
  • 7. Jens Frehse, Una generalizzazione di un controesempio di De Giorgi nella teoria delle equazioni ellitiche, Boll. Un. Mat. Ital. (4) 3 (1970), 998–1002 (Italian). MR 0276612
  • 8. Jens Frehse and Umberto Mosco, Variational inequalities with one-sided irregular obstacles, Manuscripta Math. 28 (1979), no. 1-3, 219–233. MR 535703, 10.1007/BF01647973
  • 9. Martin Fuchs, 𝑝-harmonic obstacle problems. I. Partial regularity theory, Ann. Mat. Pura Appl. (4) 156 (1990), 127–158. MR 1080213, 10.1007/BF01766976
  • 10. Martin Fuchs, Smoothness for systems of degenerate variational inequalities with natural growth, Comment. Math. Univ. Carolin. 33 (1992), no. 1, 33–41. MR 1173743
  • 11. Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034
  • 12. Mariano Giaquinta and Giuseppe Modica, Almost-everywhere regularity results for solutions of nonlinear elliptic systems, Manuscripta Math. 28 (1979), no. 1-3, 109–158. MR 535699, 10.1007/BF01647969
  • 13. E. Giusti, Un’aggiunta alla mia nota: “Regolarità parziale delle soluzioni di sistemi ellittici quasi lineari di ordine arbitrario” (Ann. Scuola Norm. Sup. Pisa (3) 23 (1969), 115–141), Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 161–166 (Italian). MR 0385297
  • 14. E. Giusti and M. Miranda, Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Rational Mech. Anal. 31 (1968/1969), 173–184 (Italian). MR 0235264
  • 15. Piotr Hajłasz and Pekka Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 10, 1211–1215 (English, with English and French summaries). MR 1336257
  • 16. Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, 10.1090/memo/0688
  • 17. Piotr Hajłasz and Paweł Strzelecki, On the differentiability of solutions of quasilinear elliptic equations, Colloq. Math. 64 (1993), no. 2, 287–291. MR 1218491
  • 18. Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
  • 19. S. Hildebrandt and K.-O. Widman, Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 191–220. MR 542048
  • 20. Per-Anders Ivert, Regularitätsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung, Manuscripta Math. 30 (1979/80), no. 1, 53–88 (German, with English summary). MR 552363, 10.1007/BF01305990
  • 21. Jana Ježková, Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities, Comment. Math. Univ. Carolin. 35 (1994), no. 1, 63–80. MR 1292584
  • 22. Oldřich John, Jan Malý, and Jana Stará, Nowhere continuous solutions to elliptic systems, Comment. Math. Univ. Carolin. 30 (1989), no. 1, 33–43. MR 995699
  • 23. Grzegorz Karch and Tonia Ricciardi, Note on Lorentz spaces and differentiability of weak solutions to elliptic equations, Bull. Polish Acad. Sci. Math. 45 (1997), no. 1, 111–116. MR 1444676
  • 24. O. A. Ladyzhenskaya and N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Izdat. “Nauka”, Moscow, 1973 (Russian). Second edition, revised. MR 0509265
    Olga A. Ladyzhenskaya and Nina N. Ural′tseva, Linear and quasilinear elliptic equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR 0244627
  • 25. R. Landes, A remark on the existence proof of Hopf’s solution of the Navier-Stokes equation, Arch. Math. (Basel) 47 (1986), no. 4, 367–371. MR 866526, 10.1007/BF01191364
  • 26. Hans Lewy and Guido Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math. 22 (1969), 153–188. MR 0247551
  • 27. Michael Meier, Boundedness and integrability properties of weak solutions of quasilinear elliptic systems, J. Reine Angew. Math. 333 (1982), 191–220. MR 660791, 10.1515/crll.1982.333.191
  • 28. J. H. Michael and William P. Ziemer, Interior regularity for solutions to obstacle problems, Nonlinear Anal. 10 (1986), no. 12, 1427–1448. MR 869551, 10.1016/0362-546X(86)90113-6
  • 29. Charles B. Morrey Jr., Partial regularity results for non-linear elliptic systems, J. Math. Mech. 17 (1967/1968), 649–670. MR 0237947
  • 30. Yi Yi Nie and Shao Bei Chen, About some notes in the variational principle, Acta Math. Sci. (English Ed.) 3 (1983), no. 1, 85–93. MR 741360
  • 31. J. Nečas and J. Stará, Principio di massimo per i sistemi ellittici quasi-lineari non diagonali, Boll. Un. Mat. Ital. (4) 6 (1972), 1–10 (Italian, with English summary). MR 0315281
  • 32. Yu. G. Reshetnyak, The differentiability almost everywhere of the solutions of elliptic equations, Sibirsk. Mat. Zh. 28 (1987), no. 4, 193–195 (Russian). MR 906049
  • 33. James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 0170096
  • 34. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • 35. M. W. Stepanoff, Sur les conditions de l'existence de la différentielle totale, Mat. Sb., Rec. Math. Soc. Math. Moscou 32 (1925), 511-527.
  • 36. Peter Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations 8 (1983), no. 7, 773–817. MR 700735, 10.1080/03605308308820285
  • 37. I. Berkes, An almost sure invariance principle for lacunary trigonometric series, Acta Math. Acad. Sci. Hungar. 26 (1975), 209–220. MR 0426085
  • 38. M. V. Fedoryuk, Lamé wave functions, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 4, 853–874, 896 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 1, 179–200. MR 966987
  • 39. William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J70, 35B35, 35B65, 35D10, 35J60, 35J85

Retrieve articles in all journals with MSC (2000): 35J70, 35B35, 35B65, 35D10, 35J60, 35J85


Additional Information

Jana Björn
Affiliation: Department of Mathematics, Lund Institute of Technology, P. O. Box 118, SE-221 00 Lund, Sweden
Email: jabjo@maths.lth.se, jabjo@mai.liu.se

DOI: http://dx.doi.org/10.1090/S0002-9947-01-02834-3
Keywords: Elliptic system, $p$-admissible weight, obstacle problem, local boundedness, differentiability a.e.
Received by editor(s): December 8, 1999
Received by editor(s) in revised form: November 20, 2000
Published electronically: May 9, 2001
Additional Notes: The results of this paper were obtained while the author was visiting the University of Michigan, Ann Arbor, on leave from the Linköping University. The research was supported by grants from the Swedish Natural Science Research Council, the Knut and Alice Wallenberg Foundation and Gustaf Sigurd Magnusons fond of the Royal Swedish Academy of Sciences.
Article copyright: © Copyright 2001 American Mathematical Society