Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Isometries of Hilbert $C^*$-modules

Author: Baruch Solel
Journal: Trans. Amer. Math. Soc. 353 (2001), 4637-4660
MSC (2000): Primary 46L08
Published electronically: July 3, 2001
MathSciNet review: 1851186
Full-text PDF

Abstract | References | Similar Articles | Additional Information


Let $X$ and $Y$ be right, full, Hilbert $C^*$-modules over the algebras $A$ and $B$ respectively and let $T:X\to Y$ be a linear surjective isometry. Then $T$ can be extended to an isometry of the linking algebras. $T$ then is a sum of two maps: a (bi-)module map (which is completely isometric and preserves the inner product) and a map that reverses the (bi-)module actions. If $A$(or $B$) is a factor von Neumann algebra, then every isometry $T:X\to Y$ is either a (bi-)module map or reverses the (bi-)module actions.

References [Enhancements On Off] (What's this?)

  • [AS] J. Arazy and B. Solel, Isometries of non-self-adjoint operator algebras, J. Funct. Anal. 90 (1990), 284-305. MR 91c:47085
  • [B1] D. P. Blecher, A new approach to Hilbert $C^*$-modules, Math. Ann. 307 (1997), 253-290. MR 98d:46063
  • [B2] D. P. Blecher, On selfdual Hilbert modules, in ``Operator Algebras and their Applications'', Fields Institute Comm. vol.13, pp.65-80, Amer. Math. Soc.,Providence, RI, 1997. MR 97k:46070
  • [F] M. Frank, A multiplier approach to the Lance-Blecher theorem, Zeit. Anal. Anwendungen 16 (1997), 565-573. MR 98j:46056
  • [Ha] M. Hamana, Triple envelopes and Silov boundaries of operator spaces, Math. J. Toyama Univ. 22 (1999), 77-93. MR 2001a:46057
  • [H] L. A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, in ``Proceedings on Infinite Demensional Holomorphy (Kentucky 1973)'', Lecture Notes in Mathematics vol.364, pp.13-40, Springer Verlag, Berlin-Heidelberg-New York, 1974. MR 53:11106
  • [Ho] G. Horn, Characterization of the predual and ideal structure of a $JBW^*$-triple, Math. Scand. 61 (1987), 117-133. MR 89a:46140
  • [K] R. V. Kadison, Isometries of operator algebras, Ann. Math. 54 (1951), 325-338. MR 13:256a
  • [KR] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, vol.II, Academic Press, New York 1986. MR 98f:46001b
  • [Ka] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), 503-529. MR 85c:46040
  • [L1] E. C. Lance, Unitary operators on Hilbert $C^*$-modules, Bull. London Math. Soc. 26 (1994), 363-366. MR 95i:46088
  • [L2] E. C. Lance, ``Hilbert $C^*$-modules - A Toolkit for Operator Algebraists'', London Math. Soc. Lecture Notes, Cambridge Univ. Press, Cambridge, UK, 1995. MR 96k:46100
  • [MS] P. S. Muhly and B. Solel, On the Morita equivalence of tensor algebras, Proc. London Math. Soc. 81 (2000), 113-118. CMP 2000:12
  • [P] W. L. Paschke, Inner product modules over $B^*$-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468. MR 50:8087
  • [Pi] G. Pisier, The operator Hilbert space $OH$, complex interpolation and tensor norms, Mem. Amer. Math. Soc. No. 585 (1996). MR 97a:46024
  • [RW] I. Raeburn and D. P. Williams, Morita equivalence and continuous trace $C^*$-algebras, Math. Surveys and Monogr. vol.60, Amer. Math. Soc., Providence RI, 1998. MR 2000c:46108
  • [S] B. Solel, Isometries of $CSL$ algebras, Trans. Amer. Math. Soc. 332 (1992), 595-606. MR 92j:47082
  • [T] M. Takesaki, ``Theory of operator algebras I'', Springer-Verlag, 1979. MR 81e:46038

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46L08

Retrieve articles in all journals with MSC (2000): 46L08

Additional Information

Baruch Solel
Affiliation: Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel

Received by editor(s): June 26, 2000
Published electronically: July 3, 2001
Additional Notes: Supported by Technion V.P.R. Fund–Steigman Research Fund, Technion V.P.R. Fund–Fund for the Promotion of Sponsored Research and the Fund for the Promotion of Research at the Technion.
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society