Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Geometric representation of substitutions of Pisot type


Authors: Vincent Canterini and Anne Siegel
Journal: Trans. Amer. Math. Soc. 353 (2001), 5121-5144
MSC (2000): Primary 37B10, 28A80; Secondary 47A35
Published electronically: July 13, 2001
MathSciNet review: 1852097
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

We prove that a substitutive dynamical system of Pisot type contains a factor which is isomorphic to a minimal rotation on a torus. If the substitution is unimodular and satisfies a certain combinatorial condition, we prove that the dynamical system is measurably conjugate to an exchange of domains in a self-similar compact subset of the Euclidean space.


References [Enhancements On Off] (What's this?)

  • 1. P. Arnoux, Recoding sturmian sequences on a subshift of finite type. Chaos from order, a worked out example, 1998 FIESTA Summer School, December 1998, Chili.
  • 2. P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, Preprint 98-18, Institut de Mathématiques de Luminy, 1998.
  • 3. Pierre Arnoux and Gérard Rauzy, Représentation géométrique de suites de complexité 2𝑛+1, Bull. Soc. Math. France 119 (1991), no. 2, 199–215 (French, with English summary). MR 1116845 (92k:58072)
  • 4. Abraham Berman and Robert J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics, vol. 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original. MR 1298430 (95e:15013)
  • 5. E. Bombieri and J. E. Taylor, Which distributions of matter diffract? An initial investigation, J. Physique 47 (1986), no. 7, Suppl. Colloq. C3, C3-19–C3-28. International workshop on aperiodic crystals (Les Houches, 1986). MR 866320 (88a:52015)
  • 6. Michael Boshernitzan and Isaac Kornfeld, Interval translation mappings, Ergodic Theory Dynam. Systems 15 (1995), no. 5, 821–832. MR 1356616 (96m:58068), http://dx.doi.org/10.1017/S0143385700009652
  • 7. V. Canterini, Géométrie des substitutions pisot unitaires, Ph.D. thesis, Université de la Méditerranée, 2000.
  • 8. V. Canterini and A. Siegel, Automate des préfixes-suffixes associé à une substitution primitive, To appear in J. Théor. Nombres Bordeaux.
  • 9. J. Cassaigne, S. Ferenczi, and L. Q. Zamboni, Imbalances in Arnoux-Rauzy sequences, Ann. Inst. Fourier 50 (2000), no. 4, 1265-1276. CMP 2001:05
  • 10. F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1977/78), no. 3, 221–239. MR 0461470 (57 #1455)
  • 11. F. M. Dekking, Recurrent sets, Adv. in Math. 44 (1982), no. 1, 78–104. MR 654549 (84e:52023), http://dx.doi.org/10.1016/0001-8708(82)90066-4
  • 12. Sébastien Ferenczi, Les transformations de Chacon: combinatoire, structure géométrique, lien avec les systèmes de complexité 2𝑛+1, Bull. Soc. Math. France 123 (1995), no. 2, 271–292 (French, with English and French summaries). MR 1340291 (96m:28018)
  • 13. M. Hollander, Linear numeration systems, finite $\beta$-expansions, and discrete spectrum of substitution dynamical systems, Ph.D. thesis, University of Washington, 1996.
  • 14. C. Holton, Private communication, 1999.
  • 15. Charles Holton and Luca Q. Zamboni, Geometric realizations of substitutions, Bull. Soc. Math. France 126 (1998), no. 2, 149–179 (English, with English and French summaries). MR 1675970 (2000c:37008)
  • 16. -, Directed graphs and substitutions, Preprint, 1999.
  • 17. B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 529–540 (French). MR 873430 (88i:26007), http://dx.doi.org/10.1017/S0143385700003679
  • 18. -, Représentation géométrique des substitutions sur 2 lettres, unpublished manuscript, 1992.
  • 19. Shunji Ito and Minako Kimura, On Rauzy fractal, Japan J. Indust. Appl. Math. 8 (1991), no. 3, 461–486. MR 1137652 (93d:11084), http://dx.doi.org/10.1007/BF03167147
  • 20. Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374 (96c:58055)
  • 21. R. Kenyon, Self-similar tilings, Ph.D. thesis, Princeton University, 1990.
  • 22. Richard Kenyon and Anatoly Vershik, Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 18 (1998), no. 2, 357–372. MR 1619562 (99g:58092), http://dx.doi.org/10.1017/S0143385798100445
  • 23. A. N. Livshits, Some examples of adic transformations and automorphisms of substitutions, Selecta Math. Soviet. 11 (1992), no. 1, 83–104. Selected translations. MR 1155902 (93d:28024)
  • 24. A. Messaoudi, Autour du fractal de rauzy, Ph.D. thesis, Université de la Méditerranée, 1996.
  • 25. Brigitte Mossé, Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. France 124 (1996), no. 2, 329–346 (French, with English and French summaries). MR 1414542 (97k:11030)
  • 26. Martine Queffélec, Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 1987. MR 924156 (89g:54094)
  • 27. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), no. 2, 147–178 (French, with English summary). MR 667748 (84h:10074)
  • 28. G. Rauzy, Rotations sur les groupes, nombres algébriques, et substitutions, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988), Univ. Bordeaux I, Talence, 19??, pp. Exp.\ No.\ 21, 12 (French). MR 993118 (90g:11017)
  • 29. A. Siegel, Facteurs $p$-adiques des substitutions primitives non unitaires, Preprint, 2000.
  • 30. -, Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type Pisot, Ph.D. thesis, Université de la Méditérannée, 2000.
  • 31. V. Sirvent and Y. Wang, Geometry of the Rauzy Fractals, Preprint, 1999.
  • 32. B. Solomyak, On the spectral theory of adic transformations, Representation theory and dynamical systems, Adv. Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 217–230. MR 1166205 (93h:28028)
  • 33. M. Solomyak, On simultaneous action of Markov shift and adic transformation, Representation theory and dynamical systems, Adv. Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 231–239. MR 1166206 (93h:28029)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37B10, 28A80, 47A35

Retrieve articles in all journals with MSC (2000): 37B10, 28A80, 47A35


Additional Information

Vincent Canterini
Affiliation: Institut de Mathématiques de Luminy, UPR 9016, Case 907, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
Address at time of publication: CESAME, Université Catholique de Louvain, Bâtiment Euler, Avenue G. Lemairè, 4, 1348 Louvain-la-Neuve, Belgium
Email: canterini@anma.ucl.ac.be

Anne Siegel
Affiliation: Institut de Mathématiques de Luminy, UPR 9016, Case 907, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
Email: siegel@iml.univ-mrs.fr

DOI: http://dx.doi.org/10.1090/S0002-9947-01-02797-0
PII: S 0002-9947(01)02797-0
Keywords: Substitutive dynamical system, toral translation, factor map, domain exchange
Received by editor(s): February 1, 2000
Received by editor(s) in revised form: August 12, 2000
Published electronically: July 13, 2001
Article copyright: © Copyright 2001 American Mathematical Society