RANDOM VARIABLE DILATION EQUATION AND MULTIDIMENSIONAL PRESCALE FUNCTIONS

JULIE BELOCK AND VLADIMIR DOBRIC

ABSTRACT. A random variable Z satisfying the random variable dilation equation $MZ = Z + G$, where G is a discrete random variable independent of Z with values in a lattice $\Gamma \subseteq \mathbb{R}^d$ and weights $\{c_k\}_{k \in \Gamma}$ and M is an expanding and Γ-preserving matrix, if absolutely continuous with respect to Lebesgue measure, will have a density φ which will satisfy a dilation equation

$$\varphi(x) = |\det M| \sum_{k \in \Gamma} c_k \varphi(Mx - k).$$

We have obtained necessary and sufficient conditions for the existence of the density φ and a simple sufficient condition for φ’s existence in terms of the weights $\{c_k\}_{k \in \Gamma}$. Wavelets in \mathbb{R}^d can be generated in several ways. One is through a multiresolution analysis of $L^2(\mathbb{R}^d)$ generated by a compactly supported prescale function φ. The prescale function will satisfy a dilation equation and its lattice translates will form a Riesz basis for the closed linear span of the translates. The sufficient condition for the existence of φ allows a tractable method for designing candidates for multidimensional prescale functions, which includes the case of multidimensional splines. We also show that this sufficient condition is necessary in the case when φ is a prescale function.

1. INTRODUCTION

Multiresolution analysis on \mathbb{R}^d is one possible framework for construction of wavelet bases. Let Γ be a lattice in \mathbb{R}^d and let $M : \mathbb{R}^d \to \mathbb{R}^d$ be an expansive linear transformation, that is, all eigenvalues of M have modulus greater than 1, such that $\Gamma M \subseteq \Gamma$. Then $m = |\det M|$ is an integer, greater than one, equal to the order of the group $\Gamma / \Gamma M$. A multiresolution analysis associated to Γ and M with prescale function φ is an increasing sequence of subspaces of $L^2(\mathbb{R}^d)$, $V_0 \subseteq V_1 \subseteq \cdots$ satisfying the following four conditions:

(i) $\bigcup_j V_j$ is dense in $L^2(\mathbb{R}^d)$;

(ii) $\bigcap_j V_j = \{0\}$;

(iii) $f(\cdot) \in V_j \iff f(M^{-j}(\cdot)) \in V_0$;

(iv) $\{\varphi(\cdot - \gamma)\}_{\gamma \in \Gamma}$ is a Riesz basis for V_0.

Received by the editors January 10, 2000 and, in revised form, January 8, 2001.

2000 Mathematics Subject Classification. Primary 60A10, 60G50; Secondary 42C40, 42C15.

Key words and phrases. Dilation equations, tilings, wavelets.
A wavelet basis associated to the multiresolution analysis is an orthonormal basis for $L^2(\mathbb{R}^d)$ of the form \[\{m^{j/2}\psi_k(M^j \cdot -\gamma): j \in \mathbb{Z}, \gamma \in \Gamma, 1 \leq k \leq m\} \] where \[\psi_k(x) = \sum_{\gamma \in \Gamma} a_k(\gamma) \varphi(Mx - \gamma) \] and \{a_k(\gamma)\}_{\gamma \in \Gamma} is square summable for $1 \leq k \leq m$. The functions \{\psi_k\}_{k=1}^m are called the wavelet generators. When the lattice translates of φ form an orthonormal basis of V_0 we take $\psi_1 := \varphi$.

Conditions (iii) and (iv) together imply that the set \(\{\varphi(M \cdot -\gamma)\}_{\gamma \in \Gamma}\) is a Riesz basis for the subspace V_1. Since $\varphi \in V_0 \subseteq V_1$, we can write

\begin{equation}
\varphi(x) = \sum_{\gamma \in \Gamma} a(\gamma) \varphi(Mx - \gamma);
\end{equation}

equation (1.1) is called a dilation equation.

One way to understand (1.1) is through a probabilistic approach. Consider a discrete random variable G with values in a subset Γ_1 of Γ and a random variable Z, independent of G, with values in \mathbb{R}^d, both defined on a complete probability space (Ω, \mathcal{F}, P), which satisfy

\begin{equation}
MZ \overset{d}{=} Z + G.
\end{equation}

Here, $\overset{d}{=} \text{ denotes equality of the corresponding laws. Assume that } Z \text{ is absolutely continuous with respect to Lebesgue measure and denote its density by } \varphi. \text{ Equation (1.2) implies that } \varphi \text{ satisfies the dilation equation (1.1) with } a(\gamma) = |\det M| P(G = \gamma). \text{ Our approach to constructing candidates for prescale functions comes from understanding the structure of the solution of this random variable dilation equation.}"

In the one-dimensional case with $M = 2$, Gundy and Zhang [6] proved that Z is absolutely continuous with respect to Lebesgue measure if and only if the fractional part of Z is uniform. They also gave a sufficient condition for the uniformity of the fractional part. In the higher dimensional case, we show that the statements of Gundy and Zhang hold true when a proper notion of the “fractional” part of a random variable is introduced. We have found the theory of self-affine tilings of \mathbb{R}^d and use of the digit representation of the fractional part of Z to be the correct framework for the higher dimensional case. The major difficulty in generalizing the results to higher dimensions comes from the fact that M may not be merely an expansion but may include a rotation. Such an M causes a tile to have, in general, a fractal boundary. The boundary difficulties called for some new techniques of proofs beyond those used in [6].

In Section 2 we introduce notation needed to express an explicit solution Z to (1.2). Definitions of the “fractional” and “integer” parts of an \mathbb{R}^d-valued random variable Z are given based on concepts of self-affine tilings. We also give some basic results regarding the fractional part of Z. In Section 3 we give necessary and sufficient conditions under which the random variable Z will have a density, in terms of the fractional part of Z. In Section 4 we give a simple sufficient condition on the weights on the values of G which guarantee absolute continuity of Z. In Section 5 we give examples of density functions obtained using these results. In Section 6 we show that the sufficient condition of Section 4 is also necessary when φ is a prescale function.
2. Basic properties of a random variable
dilation equation solution

In order to write an explicit solution of (1.2), some definitions are needed. Let
\(G_1, G_2, \ldots \) be an i.i.d. sequence of random variables defined on the space \((\Omega, \mathcal{F}, P)\),
with \(G_1 \overset{d}{=} G \). Recall that \(G \) is discrete with values in the lattice. Assume
\[
\sum_{j=1}^{\infty} M^{-j} G_j < \infty \text{ a.s.}
\]
Then the sequence \(\{Z_k\} \) defined by
\[
Z_k = \sum_{j=1}^{\infty} M^{-j} G_{j+k} \text{ for } k = 1, 2, \ldots
\]
is a sequence of random variables. Note that the following two properties hold:
\[
MZ_k = M(\sum_{j=1}^{\infty} M^{-j} G_{j+k}) = G_{k+1} + \sum_{j=2}^{\infty} M^{-j+1} G_{j+k} = G_{k+1} + Z_{k+1},
\]
and
\[
Z_0 \overset{d}{=} Z_k, \text{ and } G_k \text{ is independent of } Z_k.
\]
Therefore for any \(k \), \(Z_k \) solves the dilation equation (1.2).

The fractional part of \(Z \) will play an essential role in what follows. In order to
define the fractional part of \(Z \), we first invoke some basic facts about self-affine
 tilings. Let \(\Gamma_0 \) denote a set of coset representatives of \(\Gamma/\mathbb{M} \), and without loss of
generality, we assume \(0 \in \Gamma_0 \). A self-affine tiling of \(\mathbb{R}^d \) consists of a closed set \(T \)
with nonempty interior such that
\[
\bigcup_{\gamma \in \Gamma} (T + \gamma) = \mathbb{R}^d \text{ and } \bigcup_{\gamma \in \Gamma_0} (T + \gamma) = M T.
\]
Clearly a tiling depends on the choice of \(\Gamma_0 \). In dimensions \(d = 2 \) and \(3 \), one can
always find a \(\Gamma_0 \) that admits a self-affine tiling, and in higher dimensions it can be
done for \(m = |\text{det } M| > d \) [10]. For the remainder of the paper, we will assume
that \(\Gamma_0 \) admits a self-affine tiling.

The lattice translates of the interior of \(T \) are disjoint and \(\text{int } T \neq \emptyset \), so if
\(x \in \bigcup_{\gamma \in \Gamma} (\text{int } T + \gamma) \), then \(x \in \text{int } T + \gamma_x \) where \(\gamma_x \) denotes the unique element of \(\Gamma \)
giving the location of the point \(x \). If \(x \notin \bigcup_{\gamma \in \Gamma} (\text{int } T + \gamma) \), then we say \(x \) is a boundary
point and note that \(x \in \bigcap_{\gamma \in \Gamma_1} (T + \gamma) \), for some finite \(\Gamma_1 \subseteq \Gamma \). The fact that \(\Gamma_1 \) is
finite follows from the compactness of \(T \).

Define \([\cdot] : \mathbb{R}^d \to \Gamma \) by
\[
[x] = \begin{cases}
\gamma_x & \text{if } x \in \bigcup_{\gamma \in \Gamma} (\text{int } T + \gamma), \\
\max_{\gamma \in \Gamma_1} \gamma & \text{if } x \text{ is a boundary point,}
\end{cases}
\]
where “max” is meant in the sense of the dictionary ordering of \(\mathbb{R}^d \).

Proposition 1. \([\cdot] \) is Borel-measurable.
Proof. We only need to consider \(\{ x \mid [x] = \gamma \} \) for a fixed \(\gamma \in \Gamma \). Since \(T \) is compact and \(\Gamma \) is countable,
\[
[\gamma_1]^{-1} = (\text{int} \, T + \gamma_1) \cup \bigcup_{\gamma \in \Gamma} (T + \gamma) \cap (T + \gamma_1)
\]
is a Borel set.

For any \(x \in \mathbb{R}^d \) we will call \([x]\) the integer part of \(x \) and \((x) = x - [x]\) the fractional part of \(x \). By Proposition 1, \([Z]\) is a random variable and therefore so is \((Z) = Z - [Z]\). Notice that \((Z)\) takes values in the tile \(T \).

A point \(t \in \mathbb{R}^d \) is in \(T \) if and only if
\[
t = \sum_{j=1}^{\infty} M^{-j} \gamma_j,
\]
where for all \(j, \gamma_j \in \Gamma_0 \). Based on the expansion (2.3), define functions \(\xi_j : \Omega \to \Gamma_0, j = 1, 2, \ldots, \) by

\[
(Z_0) = \sum_{j=1}^{\infty} M^{-j} \xi_j;
\]

that is, \(\xi_j (\omega) \) is the element of \(\Gamma_0 \) which appears in the \(j \)th term of the tile expansion of \((Z_0)(\omega)\). If there is more than one expansion for a tile point, simply choose one of them.

Proposition 2. Assume that \(P((Z_0) \in \partial T) = 0 \). Then \(\{ \xi_j \}_{j=1}^{\infty} \) is a sequence of random variables and for each \(k \)
\[
(Z_k) = \sum_{j=1}^{\infty} M^{-j} \xi_{j+k} \quad \text{a.s.}
\]

Proof. From the dilation equation (1.2) and from the decomposition of \(Z_0 \) into its fractional and integer parts, we obtain
\[
M [Z_0] + M (Z_0) = M Z_0 = G_1 + Z_1 = G_1 + [Z_1] + (Z_1).
\]
Using (2.4) it follows that
\[
M [Z_0] + \xi_1 + \sum_{j=1}^{\infty} M^{-j} \xi_{j+1} = G_1 + [Z_1] + (Z_1).
\]
The definition of a lattice tiling implies \((\gamma + T) \cap (\gamma' + \text{int} \, T) = \emptyset \) if and only if \(\gamma \neq \gamma' \). So, if \((Z_1) \in \text{int} \, T\), then by (2.5), we have
\[
M [Z_0] + \xi_1 = G_1 + [Z_1] \quad \text{and} \quad (Z_1) = \sum_{j=1}^{\infty} M^{-j} \xi_{j+1}.
\]
Since \(P((Z_0) \in \partial T) = 0 \) and since \(Z_1 \equiv Z_0 \), it follows that \(P((Z_1) \in \text{int} \, T) = 1 \), and therefore
\[
(Z_1) = \sum_{j=1}^{\infty} M^{-j} \xi_{j+1} \quad \text{a.s.}
\]
By (2.6) \(\xi_1 = G_1 + [Z_1] - M [Z_0] \) almost surely and so \(\xi_1 \) is a random variable.

The proof is completed by induction on \(k \). \qed
Define $h : \Gamma \to \Gamma_0$ to be the map which assigns to each element of Γ its coset representative.

Proposition 3. Suppose $P \left((Z_0) \in \partial T\right) = 0$. Then for
\[k = 1, 2, \ldots, \quad \xi_k = h([Z_k] + G_k) \text{ a.s.} \]

Proof. $P \left((Z_0) \in \partial T\right) = 0$ implies that (2.6) holds. So $\xi_1 = h(G_1 + [Z_1])$ since coset representatives are unique.

Proposition 2, the fact that $Z_k = [Z_k] + (Z_k)$, and the dilation equation (1.2) together lead to
\[M[Z_k] + \xi_{k+1} + (Z_{k+1}) = G_{k+1} + [Z_{k+1}] + (Z_{k+1}) \text{ a.s.} \]

This implies that $M[Z_k] + \xi_{k+1} = G_{k+1} + [Z_{k+1}]$ a.s. since $P \left((Z_{k+1}) \in \partial T\right) = 0$. The uniqueness of coset representatives ensures $\xi_{k+1} = h(G_{k+1} + [Z_{k+1}])$ a.s. □

Define $g : (\mathbb{R}^d)^{\infty} \to \mathbb{R}^d$ by
\[g(x_1, x_2, \ldots) = x_1 + \left[\sum_{j=1}^{\infty} M^{-j} x_{j+1} \right]. \]

The measurability of g follows from Proposition 1 and from the fact that the projection map is a measurable function.

Proposition 4. Let $Y_k := (h \circ g)(G_k, G_{k+1}, \ldots)$. Then Y_1, Y_2, \ldots is a stationary and ergodic sequence of random variables.

Proof. The proof follows from the fact that $h \circ g$ is measurable and $\{G_k\}_{k=1}^{\infty}$ is i.i.d. □

Corollary 1. If $P \left((Z_0) \in \partial T\right) = 0$, the sequence ξ_1, ξ_2, \ldots is stationary and ergodic.

Proof. If $P \left((Z_0) \in \partial T\right) = 0$, Proposition 4 implies $\xi_k = Y_k$ a.s. □

3. Necessary and Sufficient Conditions for Absolute Continuity of Z

Throughout this section let $\lambda_T := \frac{\lambda}{\lambda(T)}$ denote Lebesgue measure normalized by the measure of the tile T (if $\Gamma = \mathbb{Z}^d$, then $\lambda(T) = 1$).

Theorem 1. Let M, Γ, Γ_0 and random variables G, Z and ξ_k be as defined in the previous sections. Suppose G has values in a finite set Γ_1 such that $\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma$.

Then the following are equivalent:
1) The law of (Z) is λ_T on T;
2) The ξ_k are independent and uniformly distributed on Γ_0;
3) The law of Z is absolutely continuous with respect to λ.

Proof. (1\Rightarrow3) Since G is bounded, so is Z, and therefore $[Z]$ takes on only finitely many values. Let Γ_2 be the range of $[Z]$. One solution of equation (1.2) is $Z \overset{d}{=} \sum_{k=1}^{\infty} M^{-k} G_k$. Jessen and Wintner's theorem [8] implies that the law of Z must be either purely discrete, purely singular, or purely absolutely continuous. We will rule out the discrete and singular cases.
First, suppose Z is purely discrete. Then $P(Z = z) > 0$ for some z. Now,

$$0 < P(Z = z) = P([Z] + (Z) = z) = P([Z] = z) P([Z] = \gamma) P([Z] = \gamma)$$

implies that there exists a $\gamma \in \Gamma_1$ such that

$$P((Z) = z - \gamma \mid [Z] = \gamma) P([Z] = \gamma) > 0,$$

contradicting the assumption that (Z) is uniform.

Second, suppose Z is purely singular with respect to Lebesgue measure. Then there exists B such that $P(Z \in B) = 1$ and $\lambda_T(B) = 0$. So

$$P([Z] + (Z) \in B) = \sum_{\gamma \in \Gamma_2} P([Z] + (Z) \in B \mid [Z] = \gamma) P([Z] = \gamma) = 1,$$

which implies that there exists a $\gamma \in \Gamma_2$ such that

$$P((Z) \in B - \gamma \mid [Z] = \gamma) P([Z] = \gamma) \geq \frac{1}{|\Gamma_2|}.$$

But under the assumption that (Z) is uniform, $P((Z) \in B - \gamma) = \lambda_T(B - \gamma) = \lambda_T(B) = 0$, a contradiction.

Next, (2) \Rightarrow 1). This proof will be broken into three main steps:

(i) assumption 2) implies $P((Z_0) \in \partial T) = 0$;
(ii) $\nu := \ell (Z)$ and λ_T agree on sets of the type $M^{-k}T + M^{-k}\gamma, \gamma \in \Gamma$;
(iii) ν and λ_T agree on all closed balls.

Remark. The first step is trivial in one dimension. For example, if $M = 2, \Gamma = \mathbf{Z}$ and $\Gamma_0 = \{0, 1\}$, then $T = [0, 1]$ and

$$P \left(\sum_{k=1}^{\infty} 2^{-k} \xi_k \in \partial T \right) = P(\xi_k = 0 \text{ for all } k \text{ or } \xi_k = 1 \text{ for all } k) = 0.$$

i) For each $n = 0, 1, 2, \ldots$ let

$$W_n = \sum_{k=1}^{\infty} M^{-k} \xi_{k+n}.$$

Notice that the range of W_n is in T and since the sequence $\{\xi_k\}_{k=1}^{\infty}$ is i.i.d., $W_n \overset{d}{=} W_0, n = 1, 2, \ldots$.

Claim. $P(W_0 \in \text{int } T) > 0$.

Proof. Since $\text{int } T \neq \emptyset$, let $B(x; r) \subset \text{int } T$ be an open ball centered at x with radius r. Then $x = \sum_{i=1}^{\infty} M^{-i} \gamma_i(x)$, where $\gamma_i(x) \in \Gamma_0$ for all i [5]. Choose k large enough so that

$$\sum_{i=k}^{\infty} \|M^{-i}\| \max \{\|\gamma\| \mid \gamma \in \Gamma_0\} < \frac{r}{2}.$$

Let $y = \sum_{i=1}^{k-1} M^{-i} \gamma_i(x)$. Note that $y \in B \left(x; \frac{r}{2} \right)$. Let

$$S = \{ t \in T \mid \gamma_i(t) = \gamma_i(x) \text{ for } i = 1, 2, \ldots, k - 1 \}.$$
Therefore, (3.2) becomes
\[P(W_0 \in S) = P(\xi_1 = \gamma_1(x), \ldots, \xi_{k-1} = \gamma_{k-1}(x)) = \frac{1}{m^{k-1}}. \]
So \(P(W_0 \in S) > 0 \), which together with \(S \subset \text{int } T \) implies \(P(W_0 \in \text{int } T) > 0 \).

One property of a tiling is that distinct tiles may only intersect on their boundaries. If we set \(\Gamma_\delta = \{ \gamma \in \Gamma \setminus \{0\} \mid T \cap (T + \gamma) \neq \emptyset \} \), then
\[\partial T = \bigcup_{\gamma \in \Gamma_\delta} (T \cap (T + \gamma)). \]

Claim. \(\{W_n \in \partial T\} \subseteq \{W_{n+1} \in \partial T\} \) for \(n = 0, 1, 2, \ldots \).

Proof. Suppose \(\omega \in \{W_0 \in \partial T\} \); that is,
\[\sum_{k=1}^{\infty} M^{-k} \xi_k(\omega) \in \partial T. \]
Applying \(M \) to both sides and using properties of tiles yields
\[W_1(\omega) = \sum_{k=1}^{\infty} M^{-k} \xi_{k+1}(\omega) \in \partial MT - \xi_1(\omega). \]
Set \(\gamma_1 := \xi_1(\omega) \). By the self-affine property of the tiling, \(\partial MT \subseteq \bigcup_{\gamma \in \Gamma_0} (\gamma + \partial T) \).

Therefore, (3.2) becomes
\[W_1(\omega) \in \bigcup_{\gamma \in \Gamma_0} ((\gamma - \gamma_1) + \partial T), \]
implying that for at least one \(\gamma \in \Gamma_0 \), \(W_1(\omega) \in (\gamma - \gamma_1) + \partial T \). So
\[W_1(\omega) \in ((\gamma - \gamma_1) + \partial T) \cap T. \]
If \(\gamma = \gamma_1 \), then \(W_1(\omega) \in \partial T \); if \(\gamma \neq \gamma_1 \), then \(\text{int } T \cap (\gamma - \gamma_1 + \text{int } T) = \emptyset \), so \(W_1(\omega) \in \partial T \). We have shown that \(\{W_0 \in \partial T\} \subseteq \{W_1 \in \partial T\} \). By the same argument, \(\{W_n \in \partial T\} \subseteq \{W_{n+1} \in \partial T\} \) for each \(n \).

Claim. \(P(W_0 \in \partial T) = 0 \).

Suppose not. Set \(B_k = \{W_k \in \partial T\} \) and \(B = \bigcup_{k=0}^{\infty} B_k \). Notice that since the \(B_k \) are nested, \(B \in \bigcap_{n=1}^{\infty} \sigma(\xi_n, \xi_{n+1}, \ldots) \). By the Kolmogorov 0-1 law for independent random variables \(P(B) = 1 \), because \(\{W_0 \in \partial T\} \subseteq B \) and \(P(W_0 \in \partial T) > 0 \).

Furthermore,
\[1 = P(B) = \lim_{k \to \infty} P(W_k \in \partial T) = P(W_0 \in \partial T), \]
with the last equality following from the fact that the sequence \(\xi_1, \xi_2, \ldots \) is i.i.d. But this is a contradiction of the fact that \(P(W_0 \in \text{int } T) > 0 \). So \(P(W_0 \in \partial T) = 0 \).

Since \(W_0 = (Z_0) \) almost surely we have shown that \(P((Z_0) \in \partial T) = 0 \), concluding the first step.

(ii) To begin the second step of the proof, fix \(\gamma \in \Gamma \) and \(k \in \mathbb{N} \). Then
\[\lambda(M^{-k}T + M^{-k}\gamma) = \lambda(M^{-k}T) = \frac{\lambda(T)}{m^k}. \]
By Proposition 2 and (i) $(Z_k) = \sum_{i=1}^{\infty} M^{-i} \xi_{i+k}$ a.s. Now,

$$P \left((Z_0) \in M^{-k}T + M^{-k}\gamma \right) = P \left(M^k (Z_0) \in T + \gamma \right) = P \left(\sum_{i=1}^{\infty} M^{-i} \xi_i \in T + \gamma \right) = P \left(\sum_{j=1-k}^{0} M^{-j} \xi_{j+k} + \sum_{j=1}^{\infty} M^{-j} \xi_{j+k} \in T + \gamma \right) = P \left(L(k) + (Z_k) \in T + \gamma \right),$$

where $L(k) := \sum_{j=1-k}^{0} M^{-j} \xi_{j+k}$. Notice that $L(k)$ is a function of finitely many ξ_i and has values in the lattice; therefore,

$$P \left(L(k) + (Z_k) \in T + \gamma \right) = \sum_{\gamma'} P \left((Z_k) \in T + \gamma - \gamma', L(k) = \gamma' \right) = P \left((Z_k) \in T, L(k) = \gamma \right).$$

The last equality follows since all the terms in the sum are zero except when $\gamma' = \gamma$ as a consequence of $P \left((Z_k) \in \partial T \right) = 0$. Furthermore,

$$P \left((Z_k) \in T, L(k) = \gamma \right) = P \left(L(k) = \gamma \right)$$

(3.3) becomes

$$P \left((Z_k) \in T, L(k) = \gamma \right) = P \left(M^{k-1} \xi_1 + \cdots + M \xi_{k-1} + \xi_k = \gamma \right) = P \left(M \left(M^{k-2} \xi_1 + \cdots + \xi_{k-1} \right) + \xi_k = \gamma \right).$$

Since each $\gamma \in \Gamma$ has a unique representation $\gamma = \gamma_0 + M\gamma''$, (3.3) becomes

$$P \left((Z_k) \in T, L(k) = \gamma \right) = P \left((Z_k) \in T, L(k) = \gamma \right) = P \left(\xi_k = \gamma_0, M^{k-2} \xi_1 + \cdots + \xi_{k-1} = \gamma'' \right)$$

$$= P \left(\xi_k = \gamma_0, \xi_{k-1} = \gamma_1, M^{k-3} \xi_1 + \cdots + \xi_{k-2} = \gamma'' \right)$$

$$= P \left(\xi_k = \gamma_0, \xi_{k-1} = \gamma_1, \ldots, \xi_1 = \gamma_{k-1} \right)$$

$$= \prod_{i=1}^{k} P \left(\xi_i = \gamma_{k-i} \right) = \frac{1}{m^k}.$$

So $L \left((Z) \right)$ and $\frac{\lambda_T}{\lambda(T)}$ are equal on sets of the type $M^{-k}T + M^{-k}\gamma, \gamma \in \Gamma$ and $k \in N$.

(iii) We now show that $L \left((Z) \right)$ and λ_T agree on all closed balls in \mathbb{R}^d.

Set $\nu := L \left((Z) \right)$, and suppose there is a closed ball $B(x, r)$ on which the measures do not agree. Assume first that $\nu \left(B(x, r) \cap T \right) > \lambda_T \left(B(x, r) \cap T \right)$. There exists $\eta > 0$, such that $\nu \left(B(x, r) \cap T \right) > \lambda_T \left(B(x, r+\eta) \cap T \right)$. Choose k_0 such that $\text{diam} \left(M^{-k_0}T \right) < \frac{\eta}{2}$. Set

$$D = \cup \left\{ M^{-k_0}T + M^{-k_0} \gamma | \gamma \in M^{k_0}B \left(x, r + \frac{\eta}{2} \right) \right\}.$$

Claim. $B(x, r) \subseteq D \subseteq B(x, r+\eta)$.

Proof. Let $y \in B(x, r)$. Since $\mathbb{R}^d = \cup_{\gamma \in \Gamma} \left(M^{-k_0}T + M^{-k_0} \gamma \right)$, there is a $\gamma \in \Gamma$ such that $y \in M^{-k_0}T + M^{-k_0} \gamma$. So $y = z + M^{-k_0} \gamma$, for some $z \in M^{-k_0}T$. If $z \in M^{-k_0}T$, then $\|z\| \leq \text{diam} \left(M^{-k_0}T \right)$ since $0 \in T$. Now

$$\|M^{-k_0} \gamma - x\| \leq \|y - x\| + \|z\| \leq r + \text{diam} \left(M^{-k_0}T \right) \leq r + \frac{\eta}{2},$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
that is,
\[M^{-k_0} \gamma \in B \left(x, r + \frac{\eta}{2} \right), \]
which means \(y \in D \).

Now suppose that \(y \in D \). Then \(y = z + M^{-k_0} \gamma \) for some \(z \in M^{-k_0} T \) and \(\gamma \in B \left(x, r + \frac{\eta}{2} \right) \), and
\[\| y - x \| \leq \| M^{-k_0} \gamma - x \| + \| z \| \leq r + \eta; \]
so \(y \in B \left(x, r + \eta \right) \). This completes the proof of the claim.

Thus \(\lambda_T \left(B \left(x, r + \eta \right) \cap T \right) \geq \lambda_T \left(D \cap T \right) \) and \(\nu \left(D \cap T \right) \geq \nu \left(B \left(x, r \right) \cap T \right) \). If we can show that \(\lambda_T \left(D \cap T \right) = \nu \left(D \cap T \right) \), we will obtain a contradiction. To see this, recall that by the self-affine property of the tiling, we can write

\[T = \bigcup_{\gamma \in \Gamma_{k_0}} M^{-k_0} T + M^{-k_0} \gamma, \tag{3.4} \]

where \(\Gamma_{k_0} = \Gamma_0 + M \Gamma_0 + \cdots + M^{k_0-1} \Gamma_0 \). If \(\gamma \in \Gamma_{k_0} \), then \(M^{-k_0} T + M^{-k_0} \gamma \subset T \), so \(\text{int}(M^{-k_0} T + M^{-k_0} \gamma) \subset T \). If \(\gamma \notin \Gamma_{k_0} \), then \(T \cap \text{int}(M^{-k_0} T + M^{-k_0} \gamma) = \emptyset \). If not, there is an \(x \) in \(T \cap \text{int}(M^{-k_0} T + M^{-k_0} \gamma) \). Since \(x \in T \), \(x \) is in one of the sets in the right-hand side of (3.4); that is, \(x \in M^{-k_0} T + M^{-k_0} \gamma' \), where \(\gamma' \in \Gamma_{k_0} \). So
\[x \in (M^{-k_0} T + M^{-k_0} \gamma') \cap \text{int}(M^{-k_0} T + M^{-k_0} \gamma), \]
which implies \(M^{k_0} x \in (T + \gamma') \cap \text{int}(T + \gamma) \). This contradicts the fact that distinct translates of \(T \) are disjoint except at the boundary. So,
\[\text{either } \text{int}(M^{-k_0} T + M^{-k_0} \gamma) \subset T \text{ or } \text{int}(M^{-k_0} T + M^{-k_0} \gamma) \subset T^c. \]
Set \(C = \Gamma_{k_0} \cap M^{k_0} B \left(x, r + \frac{\eta}{2} \right) \) and \(C' = (\Gamma \setminus \Gamma_{k_0}) \cap M^{k_0} B \left(x, r + \frac{\eta}{2} \right). \) Then
\[D \cap T = \left(\bigcup_{\gamma \in C} M^{-k_0} T + M^{-k_0} \gamma \right) \cap T \bigcup \left(\bigcup_{\gamma \in C'} M^{-k_0} T + M^{-k_0} \gamma \right) \cap T. \]
The second intersection consists only of boundary points of \(T \). Since \(\nu(\partial T) = 0 \), then
\[\nu(D \cap T) = \nu \left(\left(\bigcup_{\gamma \in C} M^{-k_0} T + M^{-k_0} \gamma \right) \cap T \right). \]
and $\nu(\partial (M^{-k_0}T + M^{-k_0}\gamma)) = 0$. The Lebesgue measure of ∂T is zero [10], so $\lambda(\partial M^{-k_0}T) = 0$. Thus we have

$$\lambda_T (D \cap T) = \lambda_T \left(\bigcup_{\gamma \in \Gamma_{k_0}} M^{-k_0}T + M^{-k_0}\gamma \right) = \sum_{\gamma \in \Gamma_{k_0}} \lambda_T (M^{-k_0}T + M^{-k_0}\gamma) = \sum_{\gamma \in \Gamma_{k_0}} \nu(M^{-k_0}T + M^{-k_0}\gamma) = \nu \left(\bigcup_{\gamma \in \Gamma_{k_0}} M^{-k_0}T + M^{-k_0}\gamma \right) = \nu(D \cap T).$$

As mentioned above, the fact that $\lambda_T(D \cap T) = \nu(D \cap T)$ implies

$$\lambda_T(B(x, r + \eta) \cap T) \geq \nu(B(x, r) \cap T)$$

which contradicts $\nu(B(x, r) \cap T) > \lambda_T(B(x, r) \cap T)$. So we conclude that $\lambda_T \leq \nu$ on all closed balls. Repeating the proof with the roles of ν and λ_T reversed yields that ν and λ_T agree on all closed balls.

Hoffmann-Jörgensen proved that Radon probabilities which agree on all closed balls in \mathbb{R}^d agree on all Borel sets. (Corollary 5 in [7], which completes the proof that 2) \Rightarrow 1).

In order to prove 3) \Rightarrow 2), we need a version of the Kakutani Dichotomy for stationary ergodic sequences.

Lemma 1. Let $\{\xi_k'\}_{k=1}^{\infty}$ be a stationary, ergodic sequence, such that each ξ_k' is uniform with values in Γ_0. Let $\{\xi_k\}_{k=1}^{\infty}$ be a stationary, ergodic sequence, such that each ξ_k has values in Γ_0, but is not uniform. Then $\mu = L(\xi_1, \xi_2, \ldots)$ and $\mu' = L(\xi'_1, \xi'_2, \ldots)$ are mutually singular.

Proof. Let $\mu = \mu_a + \mu_s$, where $\mu_a << \mu'$ and $\mu_s \perp \mu'$. Suppose $\mu_a(\Omega) > 0$.

Since $\mu \neq \mu'$, there must be a cylindrical set A such that $\mu_a(A) \neq \mu'(A)$. (If not, then $\mu_a = \mu'$, which implies $\mu = \mu'$, contradicting the assumption that $\mu \neq \mu'$.) Let $f = 1_A$, then we get

$$\int_\Omega f(x_1, \ldots, x_n)d\mu_a(x) \neq \int_\Omega f(x_1, \ldots, x_n)d\mu'(x),$$

$$E_{\mu_a}(f) \neq E_{\mu'}(f).$$

Set $c = E_{\mu_a}(f)$ and $c' = E_{\mu'}(f)$. The fact that $\{\xi_k\}_{k=1}^{\infty}$ and $\{\xi'_k\}_{k=1}^{\infty}$ are ergodic sequences means that the shift operator is an ergodic operator for (Ω, S, μ) and (Ω, S, μ') respectively, where $\Omega = \Gamma_0^{\infty}$. Applying the Ergodic Theorem (with f) and the fact that the sequences are stationary, it follows that

1) $\frac{1}{k} \sum_{i=0}^{k-1} f(x_{1+i}, \ldots, x_{n+i}) \xrightarrow{k \to \infty} c$ a.s. μ_a,

2) $\frac{1}{k} \sum_{i=0}^{k-1} f(x_{1+i}, \ldots, x_{n+i}) \xrightarrow{k \to \infty} c'$ a.s. μ'.

So, 1) is true for all $\{x_i\}_{i=1}^{\infty} \in \Omega \setminus N$, where $\mu_a(N) = 0$ and 2) is true for all $\{x_i\}_{i=1}^{\infty} \in \Omega \setminus N'$, where $\mu'(N') = 0$.
Define $M := N \cup N'$. Notice that $\mu_a(M) \leq \mu_a(N) + \mu_a(N') = \mu_a(N')$. Since $\mu_a << \mu'$ and $\mu'(N') = 0$, we have $\mu_a(N') = 0$ and so $\mu_a(M) = 0$. We have assumed that $\mu_a(\Omega) > 0$; therefore, $\mu_a(M) = 0$ implies that $\mu_a(\Omega \setminus M) > 0$; that is, $\mu_a((\Omega \setminus N) \cap (\Omega \setminus N')) > 0$, which means that there is a sequence $\{x_i\}_{i=1}^\infty \in (\Omega \setminus N) \cap (\Omega \setminus N')$ such that

$$\frac{1}{k} \sum_{i=0}^{k-1} f(x_{1+i}, \ldots, x_{n+i}) \xrightarrow{k \to \infty} c \text{ and } \frac{1}{k} \sum_{i=1}^{k-1} f(x_{1+i}, \ldots, x_{n+i}) \xrightarrow{k \to \infty} c'.$$

This is a contradiction, since $c \neq c'$. Therefore, $\mu_a = 0$ and thus, $\mu \perp \mu'$.

Now we are ready to show that 3) \Rightarrow 2).

First, we note that $L(Z) << \lambda_T$ implies that $L((Z)) << \lambda_T$. To see this, observe that for $E \in \mathcal{B}(\mathbb{R}^d)$,

$$P((Z) \in E) = P(Z - [Z] \in E) = \sum_{\gamma \in T} P(Z \in E + \gamma; [Z] = \gamma)$$

$$\leq \sum_{\gamma \in T} P(Z \in E + \gamma).$$

If $\lambda_T(E) = 0$, then $\lambda_T(E + \gamma) = 0$ and so $P(Z \in E + \gamma) = 0$ for all $\gamma \in T$ by the assumption of absolute continuity of $L(Z)$. Then \[\eqref{eq:3.5} \] implies $P((Z) \in E) = 0$. So $L((Z)) << \lambda_T$.

Since $\lambda(\partial T) = 0$, $L((Z)) << \lambda_T$ implies that $P((Z) \in \partial T) = 0$. Therefore, if we define $s : \Gamma_0^\infty \to \mathbb{R}$ by

$$s(x_1, x_2, ...) := \sum_{i=1}^\infty M^{-i}x_i,$$

If Γ_0^∞ is equipped with the product topology, s is continuous. By Proposition \[\eqref{prop:2} \] for every Borel set F the following holds true:

$$L((Z))(F) = L\left(\sum_{i=1}^\infty M^{-i}\xi_i\right)(F) = P(s(\xi_1, \xi_2, ...) \in F)$$

$$= P((\xi_1, \xi_2, ...) \in s^{-1}(F)) = \mu(s^{-1}(F)),$$

where $\mu = L(\xi_1, \xi_2, ...)$. Corollary \[\eqref{corollary:1} \] assures that the sequence $\{\xi_k\}_{k=1}^\infty$ is stationary and ergodic. Let $\mu' = L(\xi_1', \xi_2', ...)$, where $\{\xi_k'\}_{k=1}^\infty$ is an i.i.d. sequence with ξ_1' uniform on Γ_0. Suppose that $\mu \neq \mu'$. Then by Lemma \[\eqref{lemma:1} \] $\mu \perp \mu'$. So there is a set $B \subset \mathcal{B}(\Gamma_0^\infty)$ such that $\mu(B) = 1$ and $\mu'(B) = 0$. Set $A = s(B)$. Since Γ_0^∞ is a Polish space and s is continuous, A being the continuous image of a Borel set, is an analytic set. As such, A is universally measurable \[\eqref{universal-meas} \]. Let C and D be Borel sets so that $C \subseteq A \subseteq D$ and $\lambda(C) = \lambda(A) = \lambda(D)$. Since the Lebesgue measure of boundary of a tile is 0, we may assume that C does not contain any points on the boundary of tiles (the union of the tiles boundaries is a Borel set). This implies that $s^{-1}(C) \subseteq B$. From the proof of 2) \Rightarrow 1) it follows that $L(s(\xi_1', \xi_2', ...)) = \lambda_T$. Now

$$0 = \mu'(B) = P((\xi_1', \xi_2', \ldots) \in B) \geq P((\xi_1', \xi_2', \ldots) \in s^{-1}(C))$$

$$= P(s(\xi_1', \xi_2', \ldots) \in C) = \lambda_T(C) = \lambda_T(A).$$
We also have that
\[1 = \mu(B) = P((\xi_1, \xi_2, \ldots) \in B) \leq P(s(\xi_1, \xi_2, \ldots) \in D) = \mathcal{L}((Z))(A) \]
where the last equality follows from (3.4). This contradicts the fact that \(\mathcal{L}((Z)) < \lambda_T \). Therefore \(\mu = \mu' \), i.e. \(\xi_i, i = 1, 2, \ldots \), are i.i.d. and \(\xi_1 \) is uniform on \(\Gamma_0 \). This completes the proof of 3) \(\Rightarrow 2) \) and thus of Theorem 1.

4. Conditions for independence of \(\{\xi_k\} \)

In Theorem 1 the existence of a density of the solution \(Z \) to (1.2) is equivalent to the fact that the stationary, ergodic sequence \(\{\xi_k\}_{k=1}^\infty \) is a sequence of independent random variables and that \(\xi_1 \) is uniform on \(\Gamma_0 \). In this section we first investigate the effects of uniformity of \(\xi_1 \) on the distributions of \(G_1 \) and \([Z_1] \); the results are then summarized in Theorem 2. In Theorem 3 we give a sufficient condition on \(G_1 \) for the independence and uniformity of the sequence \(\{\xi_k\}_{k=1}^\infty \).

By Proposition 1, \(\xi_k = h(G_k + [Z_k]) \) a.s., provided that \(P([Z_0] \in \partial T) = 0 \). In order to describe the effects of uniformity of \(\xi_k \), it suffices to consider the relationship between \(G_1, [Z_1] \) and \(\xi_1 \).

Let \(p_i = P([Z_i] \cong \gamma_i) \) and \(q_i = P(G_1 \cong \gamma_i) \) for \(i = 0, 1, \ldots, m-1 \), where \(\gamma \cong \gamma_i \) means that the lattice point \(\gamma \) is in the coset represented by \(\gamma_i \). Recalling that \(G_1 \) and \(Z_1 \) are independent we have
\[
P(\xi_1 = \gamma_k) = P(h(G_1 + [Z_1]) = \gamma_k)
= \sum_{\gamma_i + \gamma_j \cong \gamma_k} P(G_1 \cong \gamma_i, [Z_1] \cong \gamma_j)
= \sum_{\gamma_i + \gamma_j \cong \gamma_k} P(G_1 \cong \gamma_i) P([Z_1] \cong \gamma_j)
= \sum_{\gamma_i + \gamma_j \cong \gamma_k} q_i p_j.
\]

Due to the uniqueness of equivalence class representatives, there are exactly \(m \) terms in the right-hand side of the equation. Now if \(p_i = \frac{1}{m} \) for all \(i \) or \(q_i = \frac{1}{m} \) for all \(i \) then \(\xi_i \) are uniform. Assuming that \(\xi_1 \) is uniform on \(\Gamma_0 = \{\gamma_0, \ldots, \gamma_{m-1}\} \) we have,
\[
\frac{1}{m} = q_0 p_0 + q_1 p_1 + \cdots + q_{m-1} p_{m-1},
\frac{1}{m} = q_{m-1} p_0 + q_0 p_1 + \cdots + q_{m-2} p_{m-1},
\frac{1}{m} = q_{m-2} p_0 + q_{m-1} p_1 + \cdots + q_{m-3} p_{m-1},
\cdots
\frac{1}{m} = q_{1} p_0 + q_2 p_1 + \cdots + q_{0} p_{m-1},
\]
or, in matrix form, \(QX = \frac{1}{m} [1 \ 1 \ \cdots \ 1]^T \), where \(X = [p_0 \ p_1 \ \cdots \ p_{m-1}]^T \). Notice that the rows as well as the columns of \(Q \) sum to 1. Without loss of generality, we may assume that \(q_0 \geq q_1 \geq \cdots \geq q_{m-1} \); if not, just reindex \(\Gamma_0 \) so that this ordering holds. It is obvious that \(p_i = \frac{1}{m}, i = 0, \ldots, m-1, \) is a solution of the system; we will show that it is unique by showing that the eigenvalues of the matrix \(Q \) are different from zero.
Let α_k be the kth root of $z^m = 1$. Direct computation shows that the eigenvalues of Q are $\eta_k = \sum_{j=0}^{m-1} q_j \alpha_k^j$ and the associated eigenvectors are

$$v_k = \begin{bmatrix} 1 & \alpha_k & \alpha_k^2 & \cdots & \alpha_k^{m-1} \end{bmatrix}^T,$$

for $k = 0, 1, \ldots, m - 1$.

Remark. If $k \in \{0, 1, \ldots, m - 1\}$ and m are relatively prime, then

$$\left\{e^{\frac{2\pi i j k}{m}} \mid j = 0, 1, \ldots, m - 1\right\}$$

is equal to the set of distinct roots of $z^m = 1$.

Definition 1. We say that the set $\{q_j\}_{j=0}^{m-1}$ has a cycle of length r if

$$q_0 = q_1 = \cdots = q_{r-1},$$

$$q_r = q_{r+1} = \cdots = q_{2r-1},$$

$$\ldots,$$

$$q_{m-r} = \cdots = q_{m-1}.$$

The trivial case $r = 1$ is excluded.

So, for example, the set $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}\right\}$ has a cycle of length 2 while the set $\left\{\frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \frac{1}{12}\right\}$ has no cycle. Note that if $\{q_j\}_{j=0}^{m-1}$ has a cycle of length r, then r divides m.

Lemma 2. Zero is an eigenvalue of Q if and only if $\{q_j\}_{j=0}^{m-1}$ has a cycle.

Proof. (\Rightarrow) The case of a cycle of length m is trivial.

Now consider a cycle of length r, where $r < m$. Denote the greatest common divisor of m and r by (m, r). We claim that $\eta_m = 0$ (recall that r divides m).

Since $\{q_j\}_{j=0}^{m-1}$ has a cycle of length r and $\eta_m = 2\pi i r$, we have

$$\eta_m = \sum_{j=0}^{r-1} q_j e^{\frac{2\pi i j}{m}} + \sum_{j=r}^{2r-1} q_j e^{\frac{2\pi i j}{m}} + \cdots + \sum_{j=(m, r)-1}^{m-1} q_j e^{\frac{2\pi i j}{m}}$$

$$= q_0 \sum_{j=0}^{r-1} e^{\frac{2\pi i j}{m}} + q_r \sum_{j=r}^{2r-1} e^{\frac{2\pi i j}{m}} + \cdots + q_{(m, r)-1} \sum_{j=(m, r)-1}^{m-1} e^{\frac{2\pi i j}{m}}$$

$$= 0.$$

(\Rightarrow) The assumption that there is no cycle implies $q_0 > q_{m-1}$. First we will show that $q_k \neq 0$ in the case that $(k, m) = 1$. Define $l_0 := \max\{k : q_k = q_0\}$ and inductively $l_{i+1} := \max\{k : q_k = q_{l_i+1}\}$, $i = 0, 1, 2, \ldots, n - 2$, that is, there are n different values in the set of q’s. Notice that $l_{n-1} = m - 1$ and $q_0 \neq 0$. Now,

$$\eta_k \left(1 - e^{\frac{2\pi i k}{m}}\right)$$

$$= q_0 + (q_1 - q_0) e^{\frac{2\pi i k}{m}} + \cdots + (q_{m-1} - q_{m-2}) e^{\frac{2\pi i (m-1)}{m}} - q_{m-1} e^{\frac{2\pi i (m-1)}{m}}$$

$$= (q_0 - q_{m-1}) + (q_1 - q_0) e^{\frac{2\pi i k}{m}} + \cdots + (q_{m-1} - q_{m-2}) e^{\frac{2\pi i (m-1)}{m}}$$

$$= (q_0 - q_{l_{n-1}}) + (q_{l_0} - q_0) e^{\frac{2\pi i l_0}{m}} (l_0 + 1) + (q_{l_1} - q_1) e^{\frac{2\pi i l_1}{m}} (l_1 + 1)$$

$$+ \cdots + (q_{l_{n-2}} - q_{l_{n-3}}) e^{\frac{2\pi i l_{n-2}}{m}} (l_{n-2} + 1).$$
If we set
\[z_0 = (q_0 - q_{0+1}) e^{\frac{2\pi ik}{m}(l_0+1)} + \cdots + (q_{n-2} - q_{n-2+1}) e^{\frac{2\pi ik}{m}(l_{n-2}+1)}, \]
we have \(\eta_k \left(1 - e^{\frac{2\pi ik}{m}} \right) = q_0 - q_{m-1} - z_0 \), and
\[\left| \eta_k \left(1 - e^{\frac{2\pi ik}{m}} \right) \right| \geq q_0 - q_{m-1} - |z_0|. \]
We claim \(|z_0| < q_0 - q_{m-1} \). Observe
\[|z_0| \leq q_0 - q_{0+1} + \left| (q_1 - q_{1+1}) e^{\frac{2\pi ik}{m}(l_1+1)} + \cdots + (q_{n-2} - q_{n-2+1}) e^{\frac{2\pi ik}{m}(l_{n-2}+1)} \right| \leq q_0 - q_{n-4+1} + \left| (q_{n-3} - q_{n-3+1}) + (q_{n-2} - q_{n-2+1}) e^{\frac{2\pi ik}{m}(l_{n-2} - l_{n-3})} \right|.
\]
Since \(k > 0 \), and \(k \) and \(m \) are relatively prime, \(e^{\frac{2\pi ik}{m}(l_{n-2} - l_{n-3})} \) has a nonzero imaginary part and so \((q_{n-2} - q_{n-2+1}) e^{\frac{2\pi ik}{m}(l_{n-2} - l_{n-3})} \) cannot be a positive scalar multiple of \(q_{n-3} - q_{n-3+1} \). Therefore
\[|z_0| < q_0 - q_{n-4+1} + q_{n-3} - q_{n-3+1} + \left| (q_{n-3} - q_{n-3+1}) + (q_{n-2} - q_{n-2+1}) e^{\frac{2\pi ik}{m}(l_{n-2} - l_{n-3})} \right| = q_0 - q_{m-1}.
\]
So \(\eta_k \left(1 - e^{\frac{2\pi ik}{m}} \right) \geq q_0 - q_{m-1} - |z_0| > 0 \), which completes the case \((k, m) = 1\).

Suppose now that \((k, m) > 1\). Set
\[m_1 := \frac{m}{(k, m)}, k_1 := \frac{k}{(k, m)} \text{ and } q^j_i = \sum_{\ell \equiv j} q_i, \]
where \(i \equiv j \) means \(i = j \mod m_1 \). Notice that \(q_0' \geq q_1' \geq \cdots \geq q_{m_1-1}' \) and \((k_1, m_1) = 1\). Rewriting \(\eta_k \) as
\[\eta_k = \sum_{j=0}^{m-1} q_j e^{\frac{2\pi ij k}{m}} = \sum_{j=0}^{m_1-1} q_j' e^{\frac{2\pi ij k}{m_1}}, \]
we may apply the previous case because the absence of a cycle implies \(q_0' > q_{m_1-1}' \).

We can summarize the above in the following theorem: (Recall that \(p_i = P([Z_1] \equiv \gamma_i) \) and \(q_i = P(G_1 \equiv \gamma_i) \).)

Theorem 2. The random variable \(\xi_1 \) is uniform on \(\Gamma_0 \) if and only if one of the following two statements holds:

(i) if \(\{q_j\}^m_{j=1} \) has no cycles, then \(p_i = \frac{1}{m} \) for \(i = 0, \ldots, m - 1 \), or

(ii) if \(\{q_j\}^m_{j=1} \) has no cycles, then \(q_i = \frac{1}{m} \) for \(i = 0, \ldots, m - 1 \).

The next theorem gives a condition on the distribution of \(G_1 \) which will guarantee the independence of the sequence \(\{\xi_k\}^\infty_{k=1} \).

Theorem 3. If \(P(G_1 \equiv \gamma_i) = \frac{1}{m} \) for \(i = 1, \ldots, m \), then \(\xi_1, \xi_2, \ldots \) are independent and \(\xi_1 \) is uniform.
Proof. Uniformity of ξ_1 follows from Theorem \[\text{(2)}\]. Let $k_1 < k_2 < \cdots < k_n$. We proceed by induction on n.

Suppose $n = 2$. Then

\[
P(\xi_{k_1} = \gamma_{k_1}, \xi_{k_2} = \gamma_{k_2}) = P(G_{k_1} + [Z_{k_1}] \cong \gamma_{k_1}, \xi_{k_2} = \gamma_{k_2})
= \sum_{i=0}^{m-1} P(G_k \cong \gamma_i, [Z_k] \cong \gamma_{j(i)}, \xi_{k_2} = \gamma_{k_2})
= \sum_{i=0}^{m-1} P(G_k \cong \gamma_i) P([Z_k] \cong \gamma_{j(i)}, \xi_{k_2} = \gamma_{k_2})
\]

where $\gamma_i + \gamma_{j(i)} \cong \gamma_{k_1}$, and the last equality is due to the fact that G_{k_1} is independent of $[Z_{k_1}]$ and of ξ_{k_2}. Notice that when γ_i runs through Γ_0, so does $\gamma_{j(i)}$, and since $P(G_k \cong \gamma_i) = \frac{1}{m}$, we obtain

\[
P(\xi_{k_1} = \gamma_{k_1}, \xi_{k_2} = \gamma_{k_2}) = \frac{1}{m} \sum_{i=0}^{m-1} P([Z_k] \cong \gamma_{j(i)}, \xi_{k_2} = \gamma_{k_2})
= \frac{1}{m} P(\xi_{k_2} = \gamma_{k_2})
= P(\xi_{k_1} = \gamma_{k_1}) P(\xi_{k_2} = \gamma_{k_2}).
\]

Now assume $P(\xi_{k_1} = \gamma_{k_1}, \ldots, \xi_{k_n} = \gamma_{k_n}) = \prod_{i=1}^{n} P(\xi_{k_i} = \gamma_{k_i})$. Consider

\[
P(\xi_{k_1} = \gamma_{k_1}, \ldots, \xi_{k_n} = \gamma_{k_n}, \xi_{k_{n+1}} = \gamma_{k_{n+1}})
= P(\xi_{k_1} = \gamma_{k_1}, \ldots, G_{k_n} + [Z_{k_n}] \cong \gamma_{k_n}, \xi_{k_{n+1}} = \gamma_{k_{n+1}})
= \sum_{i=0}^{m-1} P(\xi_{k_1} = \gamma_{k_1}, \ldots, G_{k_n} \cong \gamma_i, [Z_{k_n}] \cong \gamma_{j(i)}, \xi_{k_{n+1}} = \gamma_{k_{n+1}}),
\]

where $\gamma_i + \gamma_{j(i)} \cong \gamma_{k_n}$. Now, G_{k_n} is independent of $[Z_{k_n}]$ and of $\xi_{k_{n+1}}$; by the inductive hypothesis, G_{k_n} is also independent of $\xi_{k_1}, \ldots, \xi_{k_{n-1}}$. Thus

\[
\sum_{i=0}^{m-1} P(\xi_{k_1} = \gamma_{k_1}, \ldots, G_{k_n} \cong \gamma_i, [Z_{k_n}] \cong \gamma_{j(i)}, \xi_{k_{n+1}} = \gamma_{k_{n+1}})
= \sum_{i=0}^{m-1} P(G_{k_n} \cong \gamma_i) P(\xi_{k_1} = \gamma_{k_1}, \ldots, [Z_{k_n}] \cong \gamma_{j(i)}, \xi_{k_{n+1}} = \gamma_{k_{n+1}})
= \frac{1}{m} \sum_{i=0}^{m-1} P(\xi_{k_1} = \gamma_{k_1}, \ldots, [Z_{k_n}] \cong \gamma_{j(i)}, \xi_{k_{n+1}} = \gamma_{k_{n+1}})
= \frac{1}{m} P(\xi_{k_1} = \gamma_{k_1}, \ldots, \xi_{k_{n-1}} = \gamma_{k_{n-1}}, \xi_{k_{n+1}} = \gamma_{k_{n+1}})
= P(\xi_{k_n} = \gamma_{k_n}) \prod_{i \neq n-1}^{n+1} P(\xi_{k_i} = \gamma_{k_i})
\]

by the inductive hypothesis. So by induction, we have shown that $\{\xi_k\}_{k=1}^{\infty}$ is an independent sequence.

\[\square\]

Remark. Theorem \[\text{(2)}\] is symmetric in $[Z]$ and G, but Theorem \[\text{(3)}\] is not; that is, if $P([Z_k] = \gamma) = \frac{1}{m}$ for all $\gamma \in \Gamma_0$ but $P(G_k = \gamma_0) > \frac{1}{m}$ for some $\gamma_0 \in \Gamma_0$, the
sequence \(\{\xi_k\}_{k=1}^{\infty} \) is not necessarily independent. This is illustrated in the following example: \(M = 2, \Gamma = \mathbb{Z} \) (the integers) and \(\Gamma_0 = \{0, 1\} \). Let \(G \) be such that \(P(G = 0) = P(G = 1) = P(G = 2) = \frac{1}{3} \). So \(P(G \equiv 0) = P(G \text{ is even}) = \frac{2}{3} \) and \(P(G \equiv 1) = P(G \text{ is odd}) = \frac{1}{3} \). Then we have
\[
P([Z_1] \text{ even}) = P(0 \leq Z_1 < 1) + P(Z_1 = 2) = P(G_1 = 0) + P(G_1 = 1, G_2 = 0) + \cdots
\]
\[
= \frac{1}{3} \sum_{k=0}^{\infty} \left(\frac{1}{3} \right)^k = \frac{1}{2}.
\]
Therefore \(\xi_1 \) is uniform on \(\Gamma_0 \) by Theorem \(\text{[2]} \). However, the sequence \(\{\xi_k\}_{k=1}^{\infty} \) is not independent. Consider \(P(\xi_1 = 0, \xi_2 = 0) \):
\[
P(\xi_1 = 0, \xi_2 = 0)
= P(G_1 + [Z_1] \equiv 0, \xi_2 = 0)
= P(G_1 \equiv 0, [Z_1] \equiv 0, \xi_2 = 0) + P(G_1 \equiv 1, [Z_1] \equiv 1, \xi_2 = 0)
= \frac{2}{3} P([Z_1] \equiv 0, \xi_2 = 0) + \frac{1}{3} P([Z_1] \equiv 1, \xi_2 = 0).
\]
To compute the two remaining probabilities, note that
\[
[Z_1] = \left[\sum_{k=1}^{\infty} 2^{-k} G_{k+1} \right] = \left[\frac{G_2 + [Z_2]}{2} + \frac{[Z_2]}{2} \right].
\]
If \(\xi_2 = 0, G_2 + [Z_2] \) is even, so in this case, \([Z_1] = \frac{G_2 + [Z_2]}{2} \), and if \([Z_1] = \frac{G_2 + [Z_2]}{2} \), then \(\xi_2 = 0 \). This implies that
\[
\frac{2}{3} P([Z_1] \equiv 0, \xi_2 = 0) + \frac{1}{3} P([Z_1] \equiv 1, \xi_2 = 0)
= \frac{2}{3} P(G_2 + [Z_2] \equiv 0 \mod 4) + \frac{1}{3} P(G_2 + [Z_2] \equiv 2 \mod 4)
= \frac{2}{3} (P(G_2 = 0, [Z_2] = 0) + P(G_2 = 2, [Z_2] = 2))
+ \frac{1}{3} (P(G_2 = 0, [Z_2] = 2) + P(G_2 = 2, [Z_2] = 0) + P(G_2 = 1, [Z_2] = 1))
= \frac{2}{3} \left(\frac{1}{2} \cdot \frac{1}{3} + 0 \right) + \frac{1}{3} \left(0 + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} \right)
= \frac{2}{9} \neq \frac{1}{4} = P(\xi_1 = 0) P(\xi_2 = 0).
\]
Since the sequence \(\{\xi_k\}_{k=1}^{\infty} \) is not independent, by Theorem \(\text{[2]} \), \(\mathcal{L}(Z) \) is not absolutely continuous with respect to Lebesgue measure for this example. Thus, the assumption that \(\xi_1 \) is uniform does not necessarily imply the independence of the sequence \(\{\xi_k\}_{k=1}^{\infty} \).

If the range of \(G \) is \(\Gamma_0 \), then \([Z] = 0 \). In this case \(G = \xi_1 \) and the application of Theorem \(\text{[2]} \) yields the following:
Corollary 2. Suppose that the range of G is Γ_0. Then
\[\varphi(x) = \sum_{\gamma \in \Gamma_0} c(\gamma) \varphi(Mx - \gamma). \]
has a functional solution if and only if $P(G = \gamma) = c(\gamma) = \frac{1}{m}$.

The result of Corollary 2 is known. It was first proved by Grochenig and Madych (Theorem 2 in [5]) using different methods. The solution of the dilation equation in this case is $\varphi = \frac{1}{\sqrt{A(M)}} 1_T$. Scaling functions that are indicator functions over the tile are used to construct “Haar-type” wavelet bases as discussed in detail in [3].

5. Examples

In this section we give several examples of density functions obtained by assigning probabilities so that the hypotheses of Theorem 3 are satisfied.

In most cases, there is no closed form for the density function [14]; those which cannot be computed explicitly can be numerically approximated by computing the function values on the points of \(\{M^{-k}\Gamma | k = 0, \ldots, k_0\}\) for some k_0, via the dilation equation. To obtain the approximation of the graph of φ, first the values of φ at the integers are found by considering the vector of integer values as an eigenvector of eigenvalue 1 for a matrix of coefficients [14]. Then, using the scaling relation (1.1), the values of φ can be found at all points in $M^{-1}\Gamma$. Repeatedly applying (1.1) k_0 times and plotting the results gives an approximation to the graph of φ. Questions of convergence of the approximations are discussed in [3].

For each of the following examples, the eigenvalue problem for a matrix corresponding to a set containing the support of φ was solved to obtain the values at the lattice points. Then the above algorithm was applied, resulting in approximately 2000 points plotted for each graph approximation.

Example 1. Let $d = 1$, $M = 2$, $\Gamma = \mathbb{Z}$ and $\Gamma_0 = \{0, 1\}$. Suppose the range of G is $\Gamma_1 = \{0, 1, 2, 3\}$ with the following weight assignments: $c(0) = .2$, $c(1) = .4$, $c(2) = .3$, $c(3) = .1$. Then the density function φ is continuous [2] and is pictured in Figure 1 along with a four-coefficient spline function for comparison.

Example 2. Suppose $d = 2$, $\Gamma = \mathbb{Z}^2$, $\Gamma_0 = \{(0,0), (1,0), (0,1), (1,1)\}$ and
\[M = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}. \]

Define G to have values in $\Gamma_1 = [0, 2]^2 \cap \mathbb{Z}^2$ with the following probability distribution:
\[
\begin{align*}
 c((0,0)) &= c((2,0)) = c((0, 2)) = c((2,2)) = \frac{1}{16}, \\
 c((1,0)) &= c((0,1)) = c((2,1)) = c((1,2)) = \frac{1}{8}, \\
 c((1,1)) &= \frac{1}{4}.
\end{align*}
\]

Since G is clearly the convolution of two independent copies of a uniform random variable on the unit square, φ is continuous. The graph of the density function is pictured in Figure 2.
Example 3. Let $d = 2$, $M = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $\Gamma = \mathbb{Z}^2$ and $\Gamma_0 = \{(0,0),(1,0)\}$. Define G to have values in $\Gamma_1 = \{(0,0),(1,0),(2,0)\}$ with the following distribution: $c((0,0)) = \frac{1}{4}$, $c((1,0)) = \frac{1}{2}$, $c((2,0)) = \frac{1}{4}$. The graph of the density function is pictured in Figure 3. The density is a convolution of two indicator functions of the twin dragon tile and therefore it is continuous.
6. A NECESSARY CONDITION FOR MULTIDIMENSIONAL PRESCALE FUNCTIONS

Suppose \(\varphi \) is a functional solution of the dilation equation (1.1). If the lattice translates of \(\varphi \) form a Riesz basis, that is, for some positive constants \(C_1, C_2 \)

\[
C_1 \sqrt{\sum a(\gamma)^2} \leq \left\| \sum a(\gamma) \varphi(\cdot - \gamma) \right\|_{L^2(\mathbb{R}^d)} \leq C_2 \sqrt{\sum (a(\gamma))^2},
\]

then \(\varphi \) is said to be stable. We show that the condition \(\sum_{\gamma \in \delta} c(\gamma) = \frac{1}{m} \) for each \(\delta \in \Gamma_0 \), where \(m = |\det M| \), which was sufficient for the existence of a functional solution to (1.1), is necessary for the stability of \(\varphi \).

The Fourier transform version of the dilation equation (1.1) is

\[
\hat{\varphi}(\zeta) = \hat{\varphi}(M^*\zeta) A(M^*\zeta),
\]

where \(A(\zeta) = \sum_{\gamma \in \Gamma} c(\gamma) e^{-i\gamma\cdot\zeta} \). Stability of \(\varphi \) is equivalent to

\[
0 < C_1 \leq \sum_{k \in \Gamma} |\hat{\varphi}(\zeta + 2\pi k)|^2 \leq C_2 \text{ a.e.}
\]

In the case that the coefficient sequence \(c := \{c(\gamma)\}_{\gamma \in \Gamma} \) is finitely supported, the function in (6.2) is a polynomial [12] and so the inequality must hold everywhere. In the theorem below, which is known (see, for example, [9]), we will assume that the equation holds everywhere. This is not a restriction as proved in [11]. For completeness we include a short proof.

Theorem 4. Let \(\varphi \in L^2(\mathbb{R}^d) \) be a solution of the dilation equation (1.1). Suppose \(\varphi \) is stable and that equation (6.2) holds everywhere. Then \(\sum_{\gamma \in \Gamma} c(\gamma) = \frac{1}{m} \) for each \(\gamma_0 \in \Gamma_0 \).
Proof. Without loss of generality, we assume $\Gamma = \mathbb{Z}^d$. Since φ is stable, (6.2) holds. Applying equation (6.1) we obtain

$$0 < C_1 \leq \sum_{k \in \mathbb{Z}^d} |\hat{\varphi}(\zeta + 2\pi k)|^2$$

$$= \sum_{\gamma \in \Gamma_0} |A(M^{*-1}\zeta + 2\pi M^{*-1}\gamma)|^2 \sum_{k' \in \mathbb{Z}^d} |\hat{\varphi}(M^{*-1}\zeta + 2\pi (M^{*-1}\gamma + k'))|^2.$$

For $\zeta = 0$, we get

$$\sum_{k \in \mathbb{Z}^d} |\hat{\varphi}(2\pi k)|^2 = \sum_{\gamma \in \Gamma_0 \setminus \{0\}} |A(2\pi M^{*-1}\gamma)|^2 \sum_{k' \in \mathbb{Z}^d} |\hat{\varphi}(2\pi (M^{*-1}\gamma + k'))|^2$$

$$+ |A(0)|^2 \sum_{k' \in \mathbb{Z}^d} |\hat{\varphi}(2\pi k')|^2.$$

Since by (3) $A(0) = 1$, and since $\sum_{k' \in \mathbb{Z}^d} |\hat{\varphi}(2\pi (M^{*-1}\gamma + k'))|^2 \geq C_1 > 0$, we have

$$\sum_{k \in \mathbb{Z}^d} c(k) e^{-i2\pi(M^{*-1}\gamma)k} = 0$$

for each $\gamma \in \Gamma_0 \setminus \{0\}$, which, after letting $k = \gamma_k + Mn_k$, $\gamma_k \in \Gamma_0$, $n_k \in \mathbb{Z}^d$ and setting $\sum_{k \in \delta} c(\gamma_k + Mn_k) = q_\delta$ leads to

$$(6.3) \quad 0 = \sum_{\delta \in \Gamma_0} e^{-i2\pi \gamma M^{-1}\delta} q_\delta.$$

Claim. $\sum_{\delta \in \Gamma_0} e^{-i2\pi \gamma M^{-1}\delta} = 0$ for each $\gamma \in \Gamma_0 \setminus \{0\}$. \hfill \Box

Notice that the set $\left\{ e^{-i2\pi \gamma M^{-1}\delta} \mid \delta \in \Gamma_0 \right\}$ is a group on the unit circle. If

$$(6.4) \quad \sum_{\delta \in \Gamma_0} e^{-i2\pi \gamma M^{-1}\delta} = r \neq 0,$$

then for every $\gamma \in \Gamma_0 \setminus \{0\}$ there is a $\delta \in \Gamma_0$ so that $e^{-i2\pi \gamma M^{-1}\delta} \neq 1$. (If not, $e^{-i2\pi \gamma M^{-1}\delta} = 1$ for all $\delta \in \Gamma_0$ implies that

$$0 = \sum_{\delta \in \Gamma_0} \sum_{k \in \Gamma_0} c(\gamma_k + Mn_k) = \sum_{\gamma \in \Gamma_0} c(\gamma),$$

contradicting $\sum c(\gamma) = 1$.) Multiplying both sides of (6.4) by $e^{-i2\pi \gamma M^{-1}p}$ where $p \in \Gamma_0$ is such that $e^{-i2\pi \gamma M^{-1}p} \neq 1$, we obtain

$$\sum_{\delta \in \Gamma_0} e^{-i2\pi \gamma M^{-1}(\delta+p)} = re^{-i2\pi \gamma M^{-1}p}.$$

Note that since $\delta + p = \delta' + M k$, where $\delta' \in \Gamma_0$ and $k \in \mathbb{Z}^d$, then $\sum_{\delta \in \Gamma_0} e^{-i2\pi \gamma M^{-1}(\delta+p)}$ includes all the elements of the group and nothing more, and therefore it is equal to r. So $r = re^{-i2\pi \gamma M^{-1}p}$, contradicting $e^{-i2\pi \gamma M^{-1}p} \neq 1$. \hfill \Box
The set of \(m - 1 \) equations \(\sum_{\delta \in \Gamma_0} e^{-i2\pi \gamma \cdot \delta} q_\delta = 0 \) for each \(\gamma \in \Gamma_0 \setminus \{0\} \), along with the constraint \(\sum_{\delta \in \Gamma_0} q_\delta = 1 \), comprises a system of \(m \) equations with \(m \) variables \(q_\delta \). Notice that \(q_\delta = \frac{1}{m} \) for each \(\delta \in \Gamma_0 \) is a solution. The coefficient matrix for this system is given by

\[
U = \left(e^{-i2\pi \gamma_i \cdot \delta_j} \right)_{0 \leq i,j \leq m-1}.
\]

By (6.3), \(UU^* = mL_m \), and so \(\det U \neq 0 \). Therefore \(q_\delta = \frac{1}{m} \) for all \(\delta \in \Gamma_0 \) is the unique solution of the system, which concludes the proof of the theorem.

If, as in the previous section, we let \(c(\gamma) = P(G = \gamma) \), the above theorem says that \(P(G = \gamma) = \frac{1}{m} \) for each \(\gamma \in \Gamma_0 \) is necessary in order for the density \(\varphi \) to be stable. However, this condition, which by Theorems 4 and 5 guarantees that \(\varphi \) is absolutely continuous, is not sufficient for the stability of \(\varphi \). Consider the following example: \(\Gamma = \mathbb{Z} \), \(M = 2 \) with the constants assigned as follows:

\[
c(0) = c(2) = c(3) = c(5) = \frac{1}{8},
\]

\[
c(1) = c(4) = \frac{1}{4}.
\]

Notice that the two cosets have equal weight and so by Theorems 4 and 5 the solution \(\varphi \) of the dilation equation will be a density function. However, it is shown in [11] that \(\varphi \) is not stable.

References

Department of Mathematics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383

Current address: Department of Mathematics, Salem State College, Salem, Massachusetts 01970

E-mail address: jbelock@salemstate.edu

Department of Mathematics, Lehigh University, 14 Packer Avenue, Bethlehem, Pennsylvania 18015

E-mail address: vd00@lehigh.edu

URL: http://www.lehigh.edu/~vd00/vd00.html