Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the wellposedness of constitutive laws involving dissipation potentials
HTML articles powered by AMS MathViewer

by Wolfgang Desch and Ronald Grimmer PDF
Trans. Amer. Math. Soc. 353 (2001), 5095-5120 Request permission

Abstract:

We consider a material with memory whose constitutive law is formulated in terms of internal state variables using convex potentials for the free energy and the dissipation. Given the stress at a material point depending on time, existence of a strain and a set of inner variables satisfying the constitutive law is proved. We require strong coercivity assumptions on the potentials, but none of the potentials need be quadratic.

As a technical tool we generalize the notion of an Orlicz space to a cone “normed” by a convex functional which is not necessarily balanced. Duality and reflexivity in such cones are investigated.

References
  • Hans-Dieter Alber, Materials with memory, Lecture Notes in Mathematics, vol. 1682, Springer-Verlag, Berlin, 1998. Initial-boundary value problems for constitutive equations with internal variables. MR 1619546, DOI 10.1007/BFb0096273
  • J.-P. Aubin, Optima and Equilibria, An Introduction to Nonlinear Analysis, 2nd ed., Graduate Texts in Mathematics 140, Springer, Berlin, Heidelberg, New York 1998.
  • M. Brokate and P. Krejčí, Wellposedness of kinematic hardening models in elastoplasticity, Christian-Albrechts-Universität Kiel, Berichtsreihe des Mathematischen Seminars Kiel, Bericht 96–4, Februar 1996.
  • Ioan R. Ionescu and Mircea Sofonea, Functional and numerical methods in viscoplasticity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. MR 1244578
  • M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
  • P. Krejčí, Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Gakkotosho, Tokyo, 1996.
  • P. Laborde and Q. S. Nguyen, Étude de l’équation d’évolution des systèmes dissipatifs standards, RAIRO Modél. Math. Anal. Numér. 24 (1990), no. 1, 67–84 (French, with English summary). MR 1034899, DOI 10.1051/m2an/1990240100671
  • J. Lemaitre and J. L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge 1994.
  • Paul Germain and Bernard Nayroles (eds.), Applications of methods of functional analysis to problems in mechanics, Lecture Notes in Mathematics, vol. 503, Springer-Verlag, Berlin-New York, 1976. Joint Symposium, IUTAM/IMU, held in Marseille, September 1–6, 1975. MR 0521351
  • M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700
  • R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math. 24 (1968), 525–539. MR 236689
  • R. T. Rockafellar, Integrals which are convex functionals. II, Pacific J. Math. 39 (1971), 439–469. MR 310612
  • R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR 1491362, DOI 10.1007/978-3-642-02431-3
  • E. S. Şuhubi, Thermoelastic solids, in Continuum Physics II: Continuum Mechanics of Single Substance Bodies, C. Eringen, ed., Academic Press, New York, San Francisco, London 1975.
  • K. Takamizawa and K. Hayashi, Strain energy density function and uniform strain hypothesis for arterial mechanics, J. Biomechanics 20 (1987), 7–17.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 73B05, 46E30
  • Retrieve articles in all journals with MSC (1991): 73B05, 46E30
Additional Information
  • Wolfgang Desch
  • Affiliation: Institut für Mathematik, Universität Graz, Heinrichstraße 36, A-8010 Graz, Austria
  • Email: georg.desch@kfunigraz.ac.at
  • Ronald Grimmer
  • Affiliation: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901
  • Received by editor(s): March 9, 2000
  • Received by editor(s) in revised form: February 16, 2001
  • Published electronically: June 21, 2001
  • Additional Notes: Supported by Spezialforschungsbereich F 003 “Optimierung und Kontrolle” at the Karl-Franzens-Universität Graz, grant GAUK 19/1997. W. D. acknowledges the kind hospitality of Southern Illinois University, Carbondale
  • © Copyright 2001 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 353 (2001), 5095-5120
  • MSC (1991): Primary 73B05; Secondary 46E30
  • DOI: https://doi.org/10.1090/S0002-9947-01-02847-1
  • MathSciNet review: 1852096