Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representation type of $q$-Schur algebras


Authors: Karin Erdmann and Daniel K. Nakano
Journal: Trans. Amer. Math. Soc. 353 (2001), 4729-4756
MSC (2000): Primary 16G60, 20G42
DOI: https://doi.org/10.1090/S0002-9947-01-02849-5
Published electronically: July 11, 2001
MathSciNet review: 1852080
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we classify the $q$-Schur algebras having finite, tame or wild representation type and also the ones which are semisimple.


References [Enhancements On Off] (What's this?)

  • [Cox1] A.G. Cox, The blocks of the $q$-Schur algebra, J. Algebra 207 (1998), 306-325. MR 99k:16078
  • [Cox2] A.G. Cox, $\operatorname{Ext}^1$ for Weyl modules for $q$-$GL(2,k)$, Math. Proc. Camb. Phil. Soc. 124 (1998), 231-251. MR 99h:17018
  • [CE] A.G. Cox, K. Erdmann, On $\operatorname{Ext}^2$ between Weyl modules for quantum $GL_n$, Math. Proc. Camb. Phil. Soc. 128 (2000), 441-463. MR 2000m:20069
  • [DD] R. Dipper, S. Donkin, Quantum $GL_n$, Proc. London Math. Soc. 63 (1991), 165-211. MR 92g:16055
  • [DJ1] R. Dipper, G.D. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. 52 (1986), 20-52. MR 88b:20065
  • [DJ2] R. Dipper, G.D. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. 54 (1987), 57-82. MR 88m:20084
  • [Don] S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Note Series 253 (1998), CUP. CMP 2000:01
  • [DEMN] S.R. Doty, K. Erdmann, S. Martin and D.K. Nakano, Representation type of Schur algebras, Math. Zeit. 232 (1999), 137-182. MR 2000k:16011
  • [DN] S. R. Doty, D. K. Nakano, Semisimplicity of Schur algebras, Math. Proc. Camb. Phil. Soc. 124 (1998), 15-20. MR 99d:16020
  • [EN] K. Erdmann, D.K. Nakano, Representation type of Hecke algebras of type $A$, to appear in Transactions of AMS.
  • [Erd1] K. Erdmann, Blocks of tame representation type and related algebras, (Lecture Notes in Math. 1428), Springer-Verlag, New York 1990. MR 91c:20016
  • [Erd2] K. Erdmann, Schur algebras of finite type, Quart. J. Math. Oxford (2) 44 (1993), 17-41. MR 93k:16024
  • [Gr] J. A. Green, Polynomial Representations of $GL_n$, (Lecture Notes in Math. 830), Springer-Verlag, New York 1980. MR 83j:20003
  • [Jam] G.D. James, The decomposition matrices for $GL_n(q)$for $n \leq 10$, Proc. London Math. Soc. 60 (1990), 225-265. MR 91c:20024
  • [JM] G.D. James, A. Mathas, A $q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. 74 (1997), 241-274. MR 97j:20013
  • [Jan] J. C. Jantzen, Representations of Algebraic Groups, Academic Press, Orlando 1987. MR 89c:20001
  • [Mar] S. Martin, Schur Algebras and Representation Theory, Cambridge Univ. Press, 1993. MR 95f:20071
  • [PW] B. Parshall, J.P Wang, Quantum linear groups, Memoirs of the AMS 89 (1991).
  • [Ri1] C.M. Ringel, Tame Algebras, in Representation Theory I, (Lecture Notes in Math. 831), Springer-Verlag (1980), 137-287. MR 82j:16056
  • [Ri2] C.M. Ringel, The category of modules with good filtration over a quasi-hereditary algebra has almost split sequences, Math. Zeit. 208 (1991), 209-225. MR 93c:16010
  • [Th] L. Thams, The subcomodule structure of quantum symmetric powers, Bull. Austral. Math. Soc. 50 (1994), 29-39. MR 95f:17016
  • [U] K. Uno, On representations of non-semisimple specialized Hecke algebras, J. Algebra 149 (1992), 287-312. MR 93h:20044

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16G60, 20G42

Retrieve articles in all journals with MSC (2000): 16G60, 20G42


Additional Information

Karin Erdmann
Affiliation: Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford, OX1 3LB, UK
Email: erdmann@maths.ox.ac.uk

Daniel K. Nakano
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602

DOI: https://doi.org/10.1090/S0002-9947-01-02849-5
Received by editor(s): September 24, 1999
Received by editor(s) in revised form: September 13, 2000
Published electronically: July 11, 2001
Additional Notes: Research of the second author partially supported by NSF grant DMS-9800960
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society