Canonical splittings of groups and 3-manifolds

Authors:
Peter Scott and Gadde A. Swarup

Journal:
Trans. Amer. Math. Soc. **353** (2001), 4973-5001

MSC (2000):
Primary 57M07, 57N10, 20E06

Published electronically:
July 25, 2001

MathSciNet review:
1852090

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We introduce the notion of a `canonical' splitting over or for a finitely generated group . We show that when happens to be the fundamental group of an orientable Haken manifold with incompressible boundary, then the decomposition of the group naturally obtained from canonical splittings is closely related to the one given by the standard JSJ-decomposition of . This leads to a new proof of Johannson's Deformation Theorem.

**1.**Brian H. Bowditch,*Cut points and canonical splittings of hyperbolic groups*, Acta Math.**180**(1998), no. 2, 145–186. MR**1638764**, 10.1007/BF02392898**2.**M. J. Dunwoody and M. E. Sageev,*JSJ-splittings for finitely presented groups over slender groups*, Invent. Math.**135**(1999), no. 1, 25–44. MR**1664694**, 10.1007/s002220050278**3.**Benny Evans,*Boundary respecting maps of 3-mainfolds*, Pacific J. Math.**42**(1972), 639–655. MR**0321093****4.**Michael Freedman, Joel Hass, and Peter Scott,*Least area incompressible surfaces in 3-manifolds*, Invent. Math.**71**(1983), no. 3, 609–642. MR**695910**, 10.1007/BF02095997**5.**F. Fujiwara and P. Papasoglu, JSJ-Decompositions of finitely presented groups and complexes of groups, Preprint (1998).**6.**Wolfgang Heil,*On 𝑃²-irreducible 3-manifolds*, Bull. Amer. Math. Soc.**75**(1969), 772–775. MR**0251731**, 10.1090/S0002-9904-1969-12283-4**7.**William Jaco,*Lectures on three-manifold topology*, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. MR**565450****8.**William Jaco and J. Hyam Rubinstein,*PL minimal surfaces in 3-manifolds*, J. Differential Geom.**27**(1988), no. 3, 493–524. MR**940116****9.**William H. Jaco and Peter B. Shalen,*Seifert fibered spaces in 3-manifolds*, Mem. Amer. Math. Soc.**21**(1979), no. 220, viii+192. MR**539411**, 10.1090/memo/0220**10.**Klaus Johannson,*Homotopy equivalences of 3-manifolds with boundaries*, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR**551744****11.**Paik Kee Kim and Jeffrey L. Tollefson,*PL involutions of fibered 3-manifolds*, Trans. Amer. Math. Soc.**232**(1977), 221–237. MR**0454981**, 10.1090/S0002-9947-1977-0454981-2**12.**William H. Meeks III and Peter Scott,*Finite group actions on 3-manifolds*, Invent. Math.**86**(1986), no. 2, 287–346. MR**856847**, 10.1007/BF01389073**13.**William H. Meeks III and Shing Tung Yau,*The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma*, Topology**21**(1982), no. 4, 409–442. MR**670745**, 10.1016/0040-9383(82)90021-0**14.**B. Leeb and P. Scott, A geometric characteristic splitting in all dimensions, Comm. Math. Helv. 75 (2000), 201-215. CMP**2000:16****15.**Nobumitsu Nakauchi,*On free boundary Plateau problem for general-dimensional surfaces*, Osaka J. Math.**21**(1984), no. 4, 831–841. MR**765359****16.**Walter D. Neumann and Gadde A. Swarup,*Canonical decompositions of 3-manifolds*, Geom. Topol.**1**(1997), 21–40 (electronic). MR**1469066**, 10.2140/gt.1997.1.21**17.**E. Rips and Z. Sela,*Cyclic splittings of finitely presented groups and the canonical JSJ decomposition*, Ann. of Math. (2)**146**(1997), no. 1, 53–109. MR**1469317**, 10.2307/2951832**18.**R. Schoen and Shing Tung Yau,*Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature*, Ann. of Math. (2)**110**(1979), no. 1, 127–142. MR**541332**, 10.2307/1971247**19.**G. P. Scott,*On sufficiently large 3-manifolds*, Quart. J. Math. Oxford Ser. (2)**23**(1972), 159–172; correction, ibid. (2) 24 (1973), 527–529. MR**0383414****20.**Peter Scott,*A new proof of the annulus and torus theorems*, Amer. J. Math.**102**(1980), no. 2, 241–277. MR**564473**, 10.2307/2374238**21.**Peter Scott,*Strong annulus and torus theorems and the enclosing property of characteristic submanifolds of 3-manifolds*, Quart. J. Math. Oxford Ser. (2)**35**(1984), no. 140, 485–506. MR**767777**, 10.1093/qmath/35.4.485**22.**Peter Scott,*The symmetry of intersection numbers in group theory*, Geom. Topol.**2**(1998), 11–29 (electronic). MR**1608688**, 10.2140/gt.1998.2.11

Peter Scott,*Correction to: “The symmetry of intersection numbers in group theory”*, Geom. Topol.**2**(1998), Erratum 1 (electronic). MR**1639541**, 10.2140/gt.1998.2.11**23.**P. Scott and G. A. Swarup, Splittings of groups and intersection numbers, Geometry and Topology 4 (2000), 179-218. CMP**2000:16****24.**Z. Sela,*Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups. II*, Geom. Funct. Anal.**7**(1997), no. 3, 561–593. MR**1466338**, 10.1007/s000390050019**25.**G. A. Swarup,*Boundary preserving maps of 3-manifolds*, Proc. Amer. Math. Soc.**78**(1980), no. 2, 291–294. MR**550516**, 10.1090/S0002-9939-1980-0550516-X**26.**G. A. Swarup,*On a theorem of Johannson*, J. London Math. Soc. (2)**18**(1978), no. 3, 560–562. MR**518243**, 10.1112/jlms/s2-18.3.560**27.**T. W. Tucker,*Boundary-reducible 3-manifolds and Waldhausen’s theorem*, Michigan Math. J.**20**(1973), 321–327. MR**0334218****28.**F. Waldhausen, On the determination of some bounded -manifolds by their fundamental group alone, Proc. of the Internat. Symp. on Topology and its Applications, Herceg-Novi, Yugoslavia, Beograd 1969, 331-332.**29.**Friedhelm Waldhausen,*Eine Verallgemeinerung des Schleifensatzes*, Topology**6**(1967), 501–504 (German). MR**0220300**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
57M07,
57N10,
20E06

Retrieve articles in all journals with MSC (2000): 57M07, 57N10, 20E06

Additional Information

**Peter Scott**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Email:
pscott@math.lsa.umich.edu

**Gadde A. Swarup**

Affiliation:
Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

Email:
gadde@ms.unimelb.edu.au

DOI:
http://dx.doi.org/10.1090/S0002-9947-01-02871-9

Keywords:
3-manifold,
characteristic submanifold,
Deformation Theorem,
ends of groups,
intersection number,
JSJ decomposition,
splittings of groups

Received by editor(s):
August 12, 2000

Received by editor(s) in revised form:
April 9, 2001

Published electronically:
July 25, 2001

Additional Notes:
The first author was partially supported by NSF grant DMS 034681.

Article copyright:
© Copyright 2001
American Mathematical Society