Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Construction de certaines opérades et bigèbres associées aux polytopes de Stasheff et hypercubes


Author: Frédéric Chapoton
Journal: Trans. Amer. Math. Soc. 354 (2002), 63-74
MSC (2000): Primary 18D50, 52B11; Secondary 16W30
DOI: https://doi.org/10.1090/S0002-9947-01-02809-4
Published electronically: April 24, 2001
MathSciNet review: 1859025
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

Stasheff polytopes, introduced by Stasheff in his study of $H$-spaces, are linked to associativity. The direct sum of their cellular complexes is the underlying complex of the $A_{\infty}$ operad which describes homotopy associative algebras. In particular, there exists a quasi-isomorphism $A_{\infty}\rightarrow \operatorname{As}$.

Here, we define on the direct sum of their dual cellular complexes the structure of a differential graded operad. This construction extends the dendriform operad of Loday, which corresponds to the vertices of the polytopes. We also define the structure of a differential graded operad on the direct sum of the dual cellular complexes of the hypercubes. We define a quasi-isomorphism from $\operatorname{As}$ to each of these operads.

We also define non-differential variants of the two preceding operads and a morphism from $\operatorname{As}$ to each of these operads. We show that the free algebras have a coproduct which turns them into bialgebras.


RÉSUMÉ. Les polytopes de Stasheff, introduits pour l'étude des $H$-espaces, sont liés à l'associativité. La somme directe de leurs complexes cellulaires forme le complexe sous-jacent à l'opérade $A_\infty$ qui décrit les algèbres associatives à homotopie près. En particulier, il existe un quasi-isomorphisme $A_\infty\to \operatorname{As}$.

Ici, on munit la somme directe des duaux de leurs complexes cellulaires d'une structure d'opérade différentielle graduée. Cette construction généralise l'opérade des algèbres dendriformes de Loday, qui correspond aux sommets des polytopes. On munit aussi la somme directe des duaux des complexes cellulaires des hypercubes d'une structure d'opérade différentielle graduée. On définit un quasi-isomorphisme de $\operatorname{As}$ dans chacune de ces deux opérades.

On construit également des variantes non différentielles des deux opérades précédentes. On définit un morphisme de $\operatorname{As}$ dans chacune de ces opérades et on montre que les algèbres libres sont munies d'un coproduit coassociatif qui en fait des bigèbres.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 18D50, 52B11, 16W30

Retrieve articles in all journals with MSC (2000): 18D50, 52B11, 16W30


Additional Information

Frédéric Chapoton
Affiliation: Equipe Analyse Algébrique, Case 82, Institut de Mathématiques, 175 Rue du Chevaleret 75013 Paris, France
Email: chapoton@math.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9947-01-02809-4
Keywords: Operads, polytopes, permutohedra, associahedra, bialgebras
Received by editor(s): April 21, 2000
Published electronically: April 24, 2001
Article copyright: © Copyright 2001 American Mathematical Society