Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Weakly defective varieties


Authors: L. Chiantini and C. Ciliberto
Journal: Trans. Amer. Math. Soc. 354 (2002), 151-178
MSC (2000): Primary 14E25
Published electronically: July 13, 2001
MathSciNet review: 1859030
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

A projective variety $X$ is `$k$-weakly defective' when its intersection with a general $(k+1)$-tangent hyperplane has no isolated singularities at the $k+1$ points of tangency. If $X$ is $k$-defective, i.e. if the $k$-secant variety of $X$ has dimension smaller than expected, then $X$ is also $k$-weakly defective. The converse does not hold in general. A classification of weakly defective varieties seems to be a basic step in the study of defective varieties of higher dimension. We start this classification here, describing all weakly defective irreducible surfaces. Our method also provides a new proof of the classical Terracini's classification of $k$-defective surfaces.


References [Enhancements On Off] (What's this?)

  • [Adl] Bjørn Ådlandsvik, Joins and higher secant varieties, Math. Scand. 61 (1987), no. 2, 213–222. MR 947474 (89j:14030)
  • [ArCo] Enrico Arbarello and Maurizio Cornalba, Footnotes to a paper of Beniamino Segre: “On the modules of polygonal curves and on a complement to the Riemann existence theorem” (Italian) [Math. Ann. 100 (1928), 537–551;\ Jbuch 54, 685], Math. Ann. 256 (1981), no. 3, 341–362. The number of 𝑔¹_{𝑑}’s on a general 𝑑-gonal curve, and the unirationality of the Hurwitz spaces of 4-gonal and 5-gonal curves. MR 626954 (83d:14016), http://dx.doi.org/10.1007/BF01679702
  • [Br] Bronowski J., Surfaces whose prime sections are hyperelliptic, J. London Math. Soc. 8 (1933), 308-312.
  • [CJ1] Michael L. Catalano-Johnson, The possible dimensions of the higher secant varieties, Amer. J. Math. 118 (1996), no. 2, 355–361. MR 1385282 (97a:14058)
  • [CJ2] Michael Catalano-Johnson, When do 𝑘 general double points impose independent conditions on degree 𝑑 plane curves, The Curves Seminar at Queen’s, Vol.\ X (Kingston, ON, 1995) Queen’s Papers in Pure and Appl. Math., vol. 102, Queen’s Univ., Kingston, ON, 1996, pp. 166–181. MR 1381737 (97g:14038)
  • [ChCi] Luca Chiantini and Ciro Ciliberto, A few remarks on the lifting problem, Astérisque 218 (1993), 95–109. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). MR 1265310 (95c:14072)
  • [CiHi] Ciro Ciliberto and André Hirschowitz, Hypercubiques de 𝑃⁴ avec sept points singuliers génériques, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 3, 135–137 (French, with English summary). MR 1121575 (92g:14043)
  • [CiLoMi] Ciro Ciliberto, Angelo Felice Lopez, and Rick Miranda, Some remarks on the obstructedness of cones over curves of low genus, Higher-dimensional complex varieties (Trento, 1994) de Gruyter, Berlin, 1996, pp. 167–182. MR 1463178 (98i:14006)
  • [Ci] Ciro Ciliberto, Hilbert functions of finite sets of points and the genus of a curve in a projective space, Space curves (Rocca di Papa, 1985) Lecture Notes in Math., vol. 1266, Springer, Berlin, 1987, pp. 24–73. MR 908707 (89c:14039), http://dx.doi.org/10.1007/BFb0078177
  • [CiSe] Ciro Ciliberto and Edoardo Sernesi, Singularities of the theta divisor and congruences of planes, J. Algebraic Geom. 1 (1992), no. 2, 231–250. MR 1144438 (92j:14034)
  • [Dale1] M. Dale, Terracini’s lemma and the secant variety of a curve, Proc. London Math. Soc. (3) 49 (1984), no. 2, 329–339. MR 748993 (85g:14066), http://dx.doi.org/10.1112/plms/s3-49.2.329
  • [Dale2] Dale M., On the secant variety of an algebrac surface, University of Bergen, Dept. of Math. preprint no. 33 (1984).
  • [DiG] Di Gennaro V., Self intersection of the canonical bundle of a projective variety, to appear in Comm. in Alg..
  • [EiHa] Joe Harris, Curves in projective space, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427 (84g:14024)
  • [EnChi] Federigo Enriques and Oscar Chisini, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche. 2. Vol. III, IV, Collana di Matematica [Mathematics Collection], vol. 5, Nicola Zanichelli Editore S.p.A., Bologna, 1985 (Italian). Reprint of the 1924 and 1934 editions. MR 966665 (90b:01106b)
  • [Fa] Barbara Fantechi, On the superadditivity of secant defects, Bull. Soc. Math. France 118 (1990), no. 1, 85–100 (English, with French summary). MR 1077089 (92c:14049)
  • [Ga] Dionisio Gallarati, Alcune osservazioni sopra le varietà i cui spazi tangenti si appoggiano irregolarmente a spazi assegnati, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 20 (1956), 193–199 (Italian). MR 0080336 (18,231b)
  • [GrHa] Phillip Griffiths and Joseph Harris, Algebraic geometry and local differential geometry, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 3, 355–452. MR 559347 (81k:53004)
  • [Ha] Joe Harris, A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 35–68. MR 616900 (82h:14010)
  • [Ma] T. Matsusaka, On a theorem of Torelli, Amer. J. Math. 80 (1958), 784–800. MR 0097398 (20 #3867)
  • [Pal1] Palatini F., Sulle varietà algebriche per le quali sono di dimensione minore dell'ordinario, senza riempire lo spazio ambiente, una o alcune delle varietà formate da spazi seganti, Atti. Accad. Torino 44 (1909), 362-374.
  • [Pal2] Palatini F., Sulle superficie algebriche i cui $S_{h}$$(h+1)$-seganti non riempiono lo spazio ambiente, Atti. Accad. Torino 41 (1906), 634-640.
  • [Sco1] Scorza G., Determinazione delle varietá a tre dimensioni di $S-r$, $r\ge 7$, i cui $S_{3}$ tangenti si tagliano a due a due., Rend. Circ. Mat. Palermo 25 (1908), 193-204.
  • [Sco2] Scorza G., Un problema sui sistemi lineari di curve appartenenti a una superficie algebrica, Rend. R. Ist. Lombardo (2) 41 (1908), 913-920.
  • [Segre] Segre C., Preliminari di una teoria delle varietá luoghi di spazi, Rend. Circ. Mat. Palermo 30 (1910), 87-121.
  • [Terr1] Terracini A., Sulle $V_{k}$ per cui la varietà degli $S_{h}$$(h+1)$-seganti ha dimensione minore dell' ordinario, Rend. Circ. Mat. Palermo 31 (1911), 392-396.
  • [Terr2] Terracini A., Su due problemi, concernenti la determinazione di alcune classi di superficie, considerati da G. Scorza e F. Palatini, Atti Soc. Natur. e Matem. Modena (V) 6 (1921-22), 3-16.
  • [Zak] F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, vol. 127, American Mathematical Society, Providence, RI, 1993. Translated from the Russian manuscript by the author. MR 1234494 (94i:14053)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14E25

Retrieve articles in all journals with MSC (2000): 14E25


Additional Information

L. Chiantini
Affiliation: Department of Mathematics, University of Siena, Via del Capitano 15, 53100 Siena, Italy
Email: chiantini@unisi.it

C. Ciliberto
Affiliation: Department of Mathematics, University of Rome II, Viale della Ricerca Scientifica, 16132 Rome, Italy
Email: cilibert@axp.mat.uniroma2.it

DOI: http://dx.doi.org/10.1090/S0002-9947-01-02810-0
PII: S 0002-9947(01)02810-0
Received by editor(s): March 1, 2000
Published electronically: July 13, 2001
Article copyright: © Copyright 2001 American Mathematical Society