Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Weakly defective varieties

Authors: L. Chiantini and C. Ciliberto
Journal: Trans. Amer. Math. Soc. 354 (2002), 151-178
MSC (2000): Primary 14E25
Published electronically: July 13, 2001
MathSciNet review: 1859030
Full-text PDF

Abstract | References | Similar Articles | Additional Information


A projective variety $X$ is `$k$-weakly defective' when its intersection with a general $(k+1)$-tangent hyperplane has no isolated singularities at the $k+1$ points of tangency. If $X$ is $k$-defective, i.e. if the $k$-secant variety of $X$ has dimension smaller than expected, then $X$ is also $k$-weakly defective. The converse does not hold in general. A classification of weakly defective varieties seems to be a basic step in the study of defective varieties of higher dimension. We start this classification here, describing all weakly defective irreducible surfaces. Our method also provides a new proof of the classical Terracini's classification of $k$-defective surfaces.

References [Enhancements On Off] (What's this?)

  • [Adl] Adlandsvik B., Joins and Higher secant varieties, Math. Scand. 61 (1987), 213-222. MR 89j:14030
  • [ArCo] Arbarello E., Cornalba M., Footnotes to a paper of B. Segre, Math. Ann. 256 (1981), 341-362. MR 83d:14016
  • [Br] Bronowski J., Surfaces whose prime sections are hyperelliptic, J. London Math. Soc. 8 (1933), 308-312.
  • [CJ1] Catalano-Johnson M., The possible dimensions of the higher secant varieties, Amer. J. Math. 118 (1996), 355-361. MR 97a:14058
  • [CJ2] Catalano-Johnson M., When do $k$ general double points impose independent conditions on degree $d$ plane curves?, Curves Seminar of Queen's, Vol. X, Queen's Pap. Pure Appl. Math. 102, Queen's Univ., Kingston, Ont., 1995, pp. 166-181. MR 97g:14038
  • [ChCi] Chiantini L., Ciliberto C., A few remarks on the lifting problem, Asterisque 218 (1993), 95-109. MR 95c:14072
  • [CiHi] Ciliberto C., Hirschowitz A., Hypercubiques de $\mathbf{P}^{4}$ avec sept pointes singulieres generiques, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 135-137. MR 92g:14043
  • [CiLoMi] Ciliberto C., Lopez A., Miranda R., Some remarks on the obstructedness of cones over curves of low genus, in Higher dimensional complex varieties, Proceedings Trento 1994, De Gruyter (1996), 167-182. MR 98i:14006
  • [Ci] Ciliberto C., Hilbert functions of finite sets and the genus of a curve in projective space, Springer Lect. Notes in Math. 1266 (1987), 24-73. MR 89c:14039
  • [CiSe] Ciliberto C., Sernesi E., Singularities of the theta divisor and congruences of planes, J. Alg. Geom. 1 (1992), 231-250. MR 92j:14034
  • [Dale1] Dale M., Terracini's lemma and the secant variety of a curve, Proc. London Math. Soc. (3) 49 (1984), 329-339. MR 85g:14066
  • [Dale2] Dale M., On the secant variety of an algebrac surface, University of Bergen, Dept. of Math. preprint no. 33 (1984).
  • [DiG] Di Gennaro V., Self intersection of the canonical bundle of a projective variety, to appear in Comm. in Alg..
  • [EiHa] Eisenbud D., Harris J., Curves in projective spaces, Montreal University Press (1982). MR 84g:14024
  • [EnChi] Enriques F., Chisini O., Teoria geometrica delle equazioni e delle funzioni algebriche, vol. III, Zanichelli (Bologna) (1985). MR 90b:01106b
  • [Fa] Fantechi, B., On the superadditivity of secants defects, Bull. Soc. Math. France 118 (1990), 85-100. MR 92c:14049
  • [Ga] Gallarati D., Alcune osservazioni sopra le varietà i cui spazi tangenti si appoggiano irregolarmente a spazi assegnati, Rend. Accad. Naz. Lincei, VIII 20 (1956), 193-199. MR 18:231b
  • [GrHa] Griffiths Ph., Harris J., Algebraic geometry and local differential geometry, Ann. Scient. Ec. Norm. Sup. 12 (1979), 335-432. MR 81k:53004
  • [Ha] Harris J., A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), 35-68. MR 82h:14010
  • [Ma] Matsusaka T., On a theorem of Torelli, Amer. J. of Math. 80 (1958), 801-821. MR 20:3867
  • [Pal1] Palatini F., Sulle varietà algebriche per le quali sono di dimensione minore dell'ordinario, senza riempire lo spazio ambiente, una o alcune delle varietà formate da spazi seganti, Atti. Accad. Torino 44 (1909), 362-374.
  • [Pal2] Palatini F., Sulle superficie algebriche i cui $S_{h}$$(h+1)$-seganti non riempiono lo spazio ambiente, Atti. Accad. Torino 41 (1906), 634-640.
  • [Sco1] Scorza G., Determinazione delle varietá a tre dimensioni di $S-r$, $r\ge 7$, i cui $S_{3}$ tangenti si tagliano a due a due., Rend. Circ. Mat. Palermo 25 (1908), 193-204.
  • [Sco2] Scorza G., Un problema sui sistemi lineari di curve appartenenti a una superficie algebrica, Rend. R. Ist. Lombardo (2) 41 (1908), 913-920.
  • [Segre] Segre C., Preliminari di una teoria delle varietá luoghi di spazi, Rend. Circ. Mat. Palermo 30 (1910), 87-121.
  • [Terr1] Terracini A., Sulle $V_{k}$ per cui la varietà degli $S_{h}$$(h+1)$-seganti ha dimensione minore dell' ordinario, Rend. Circ. Mat. Palermo 31 (1911), 392-396.
  • [Terr2] Terracini A., Su due problemi, concernenti la determinazione di alcune classi di superficie, considerati da G. Scorza e F. Palatini, Atti Soc. Natur. e Matem. Modena (V) 6 (1921-22), 3-16.
  • [Zak] Zak F., Tangents and secants of algebraic varieties, Transl. Math. Monogr. 127, Amer. Math. Soc., Providence, RI, (1993). MR 94i:14053

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14E25

Retrieve articles in all journals with MSC (2000): 14E25

Additional Information

L. Chiantini
Affiliation: Department of Mathematics, University of Siena, Via del Capitano 15, 53100 Siena, Italy

C. Ciliberto
Affiliation: Department of Mathematics, University of Rome II, Viale della Ricerca Scientifica, 16132 Rome, Italy

Received by editor(s): March 1, 2000
Published electronically: July 13, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society