ON ARITHMETIC MACAULAYIFICATION
OF NOETHERIAN RINGS

TAKESI KAWASAKI

Abstract. The Rees algebra is the homogeneous coordinate ring of a blowing-up. The present paper gives a necessary and sufficient condition for a Noetherian local ring to have a Cohen-Macaulay Rees algebra: A Noetherian local ring has a Cohen-Macaulay Rees algebra if and only if it is unmixed and all the formal fibers of it are Cohen-Macaulay. As a consequence of it, we characterize a homomorphic image of a Cohen-Macaulay local ring. For non-local rings, this paper gives only a sufficient condition. By using it, however, we obtain the affirmative answer to Sharp’s conjecture. That is, a Noetherian ring having a dualizing complex is a homomorphic image of a finite-dimensional Gorenstein ring.

1. Introduction

Let \(A \) be a commutative ring with identity and \(\mathfrak{b} \) an ideal in \(A \). The Rees algebra of \(\mathfrak{b} \) is the graded ring

\[
R(\mathfrak{b}) = \bigoplus_{n \geq 0} (\mathfrak{b}T)^n,
\]

where \(T \) is an indeterminate. We often regard \(R(\mathfrak{b}) \) as an \(A \)-subalgebra \(A[\mathfrak{b}T] \) of the polynomial ring \(A[T] \). The Rees algebra is an important object of Algebraic Geometry and Commutative Algebra because the canonical morphism \(\text{Proj} R(\mathfrak{b}) \to \text{Spec} A \) is the blowing-up of \(\text{Spec} A \) along the closed subscheme \(\text{Spec} A/\mathfrak{b} \).

In the present paper, we consider the existence of Cohen-Macaulay Rees algebras. A Rees algebra \(R(\mathfrak{b}) \) is said to be an arithmetic Macaulayfication of \(A \) if it is Cohen-Macaulay and \(\mathfrak{b} \) is of positive height. The main theorem of this paper is the following.

Theorem 1.1. Let \(A \) be a Noetherian local ring of positive dimension. Then the following statements are equivalent:

(A) \(A \) has an arithmetic Macaulayfication;
(B) \(A \) is unmixed and all the formal fibers of \(A \) are Cohen-Macaulay.

Here a Noetherian local ring \(A \) is said to be unmixed if \(\dim \hat{A}/\mathfrak{p} = \dim \hat{A} \) for every associated prime \(\mathfrak{p} \) of the completion \(\hat{A} \). The formal fibers of \(A \) are the fiber rings of the natural homomorphism \(A \to \hat{A} \).
The studies in the Cohen-Macaulay property of Rees algebras started from Barry's paper \[5\]. He gave the defining ideal of \(R(b) \) and its free resolution if \(b \) is generated by a regular sequence. He also showed that \(R(b) \) is Cohen-Macaulay if \(A \) is also and if \(b \) is generated by a regular sequence. Around 1980, Goto and Shimoda studied several properties of \(R(b) \) in the case where \(A \) is a Buchsbaum local ring and \(b \) a parameter ideal. See \[9\], \[10\], \[11\], and \[31\]. Summarizing these investigations, Goto and Yamagishi \[12\] established the theory of unconditioned strong \(d \)-sequences. Their theory contains the existence of an arithmetic Macaulayfication in the case where \(A \) is unmixed and \(\text{Spec} A \) is Cohen-Macaulay except for the closed point. See also Brodmann \[7\] and Schenzel \[27\]. Recently Kurano \[19\] proved that a Noetherian local ring \(A \) containing a finite field has an arithmetic Macaulayfication if the non-\(F \)-rational locus of \(A \) is of dimension 1. Independently this was also done by Aberbach \[1\]. Motivated by Kurano’s work, the author \[18\] also gave some sufficient conditions for \(A \) to have an arithmetic Macaulayfication. Theorem 1.1 gives a necessary and sufficient condition for an arithmetic Macaulayfication to exist.

If the Rees algebra \(R(b) \) is a Cohen-Macaulay ring, then the projective scheme \(\text{Proj} R(b) \) is Cohen-Macaulay. However, the converse is not true in general. The author \[17\] gave an ideal \(b \) such that \(\text{Proj} R(b) \) is a Cohen-Macaulay scheme for fairly general Noetherian local rings. Theorem 1.1 gives another proof of the result in \[17\].

In our arithmetic Macaulayfication \(R(b) \), the ideal \(b \) is generated by monomials of a certain system of parameters, named a \(p \)-standard system of parameters. Sections 2 and 3 are devoted to discussing the existence and properties of a \(p \)-standard system of parameters. Theorems 2.5 and 3.6 are improvements of Theorems 2.7 and 3.1 of \[17\], respectively. We give a proof of Theorem 1.1 in Section 4. In our proof the theory of multigraded Rees algebras, which was introduced by Herrmann, Hyry, and Ribbe \[15\], plays a key role. Our ideal \(b \) is very complicated. However, their theory makes the proof of Theorem 1.1 simple.

In section 5 we give a consequence of Theorem 1.1.

Corollary 1.2. A Noetherian local ring is a homomorphic image of a Cohen-Macaulay local ring if and only if it is universally catenary and all the formal fibers of it are Cohen-Macaulay. An excellent local ring is a homomorphic image of a Cohen-Macaulay excellent local ring.

However, there exists no analogy with the Gorenstein property. In fact, Ogoma \[22\] Example 1] gave an example of an acceptable local ring which is not a homomorphic image of a Gorenstein ring.

For non-local rings, this paper gives only a sufficient condition for an arithmetic Macaulayfication to exist.

Theorem 1.3. Let \(B \) be a Noetherian ring possessing a dualizing complex. If the codimension function is a constant on the associated primes of \(B \), then \(B \) has an arithmetic Macaulayfication.

We refer the readers to Section 5 for the definition of the codimension function. By using Theorem 1.3, we give an affirmative answer to Sharp’s conjecture \[30\] Conjecture 4.4.

Corollary 1.4. A Noetherian ring has a dualizing complex if and only if it is a homomorphic image of a finite-dimensional Gorenstein ring.
This is a simple criterion for a dualizing complex to exist. Several authors gave partial answers. See [2], [3], [4], [22], and [23]. We give proofs of Theorem 1.3 and Corollary 1.4 in Section 6.

Throughout this paper, \(A \) denotes a Noetherian local ring with maximal ideal \(\mathfrak{m} \). We assume that the dimension of \(A \) is positive. We refer the reader to [13], [14], and [20], for unexplained terminology.

2. A \(p \)-standard system of parameters, I

In this section, we give the definition of a \(p \)-standard system of parameters and discuss the existence of it. For a finitely generated \(A \)-module \(M \), let \(a^p(M) \) denote the annihilator of the \(p \)-th local cohomology module \(H^p_{\mathfrak{m}}(M) \) of \(M \) and let \(a(M) = \prod_{p<\dim A} a^p(M) \).

Definition 2.1. Let \(M \) be a finitely generated \(A \)-module of dimension \(d > 0 \), \(x_1, \ldots, x_d \) a system of parameters for \(M \) and \(s \) an integer such that \(0 \leq s < d \). We say that \(x_1, \ldots, x_d \) is a \(p \)-standard system of parameters of type \(s \) for \(M \) if

1. \(x_{s+1}, \ldots, x_d \in a(M) \);
2. \(x_i \in a(M/(x_{i+1}, \ldots, x_d)M) \) for \(1 \leq i \leq s \).

This notion was given by N. T. Cuong [8]. He showed that there exists a \(p \)-standard system of parameters of type \(d-1 \) for \(M \) whenever \(A \) possesses a dualizing complex. We improve his result. For a finitely generated \(A \)-module \(M \), let \(\text{NCM}(M) \) denote the non-Cohen-Macaulay locus of \(M \), that is, \(\text{NCM}(M) = \{ p \in \text{Spec } A \mid M_p \) is not a Cohen-Macaulay \(A_p \)-module\}. By modifying the proof of [29, Theorem 3.3], we obtain the following lemma.

Lemma 2.2. Let \(B \) and \(C \) be Noetherian rings and \(B \to C \) a faithfully flat ring homomorphism. We assume that \(C_p/pC_p \) is a Cohen-Macaulay ring for every prime ideal \(p \) in \(B \). Let \(M \) be a finitely generated \(B \)-module. If there exists an ideal \(\mathfrak{c} \) in \(C \) such that \(\text{NCM}(M \otimes_B C) = V(\mathfrak{c}) \), then \(\text{NCM}(M) = V(\mathfrak{c} \cap B) \).

We need the following propositions to choose a \(p \)-standard system of parameters.

Proposition 2.3. Assume that \(A \) is universally catenary and that all the formal fibers of \(A \) are Cohen-Macaulay. Let \(M \) be a finitely generated \(A \)-module of dimension \(d > 0 \). If \(M \) is equidimensional, then \(\text{NCM}(M) = V(a(M)) \). In particular, \(\dim A/a(M) < d \).

Proof. If \(A \) has a dualizing complex, then the assertion was given by Schenzel [20, p. 52]. Assume that \(A \) has no dualizing complex. The completion \(\hat{A} \) of \(A \) has a dualizing complex and is a faithfully flat \(A \)-algebra. Since \(A \) is formally catenary, \(M \otimes \hat{A} \) is also equidimensional. Therefore the non-Cohen-Macaulay locus of \(M \otimes A \) is

\[
V(a(M \otimes \hat{A})) = V(a^0(M \otimes \hat{A}) \cap \cdots \cap a^{d-1}(M \otimes \hat{A})).
\]

By using Lemma 2.2 we find that the non-Cohen-Macaulay locus of \(M \) is

\[
V(a^0(M \otimes \hat{A}) \cap \cdots \cap a^{d-1}(M \otimes \hat{A}) \cap M) = V(a^0(M) \cap \cdots \cap a^{d-1}(M)).
\]

The right-hand side of the equation above is equal to \(V(a(M)) \). Since \(\text{NCM}(M) \) contains no minimal prime of \(M \), \(\dim A/a(M) = \dim \text{NCM}(M) < d \).
Corollary 2.4. Assume that A is universally catenary and that all the formal fibers of A are Cohen-Macaulay. Let M be a finitely generated A-module of dimension $d > 0$. If $\dim A/p = d$ for every associated prime ideal p of M, then $\dim A/a(M) < d - 1$.

Proof. Let p be a prime ideal of A such that $\dim A/p = d - 1$ and $M_p \neq 0$. Then the one-dimensional A_p-module M_p is Cohen-Macaulay because M_p has no embedded prime. Therefore $\dim A/a(M) = \dim NCM(M) < d - 1$. \hfill \square

The following theorem assures us of the existence of the p-standard system of parameters.

Theorem 2.5. Assume that A is universally catenary and that all the formal fibers of A are Cohen-Macaulay. Let M be a finitely generated A-module of dimension $d > 0$. If M is equidimensional and s an integer such that $\dim A/a(M) \leq s < d$, then there exists a p-standard system of parameters of type s for M.

Proof. Since $d - \dim A/a(M) \geq d - s$, there exist $d - s$ elements x_{s+1}, \ldots, x_d in $a(M)$ such that $\dim M/(x_{s+1}, \ldots, x_d)M = s$. If s elements x_{i_1}, \ldots, x_{i_s} in A such that $\dim M/(x_{i_1}, \ldots, x_{i_s})M = i$ are given, then $M/(x_{i_1}, \ldots, x_{i_s})M$ is also equidimensional. Therefore $\dim A/M/(x_{i_1}, \ldots, x_{i_s})M < i$ and hence there exists an element x_i in $a(M/(x_{i_1}, \ldots, x_{i_s})M)$ such that $\dim M/(x_i, \ldots, x_{i_s})M = i - 1$. \hfill \square

In this section, we give some properties of a p-standard system of parameters. First we recall the definition of d-sequences and the one of unconditioned strong d-sequences.

Definition 3.1. Let M be an A-module. A sequence x_1, \ldots, x_d of elements in A is said to be a d-sequence on M if

$$(x_1, \ldots, x_{i-1})M : x_i x_j = (x_1, \ldots, x_{i-1})M : x_j$$

for any $1 \leq i \leq j \leq d$. Here we set $(x_1, \ldots, x_{i-1}) = (0)$ if $i = 1$.

A sequence x_1, \ldots, x_d of elements in A is said to be an unconditioned strong d-sequence (for short, a $u.s.d$-sequence) on M if $x_{i_1}^{n_1}, \ldots, x_{i_d}^{n_d}$ is a d-sequence on M for any positive integers n_1, \ldots, n_d and in any order.

The following is one of the important properties of d-sequences. It was first given by Goto and Shimoda [11 Lemma 4.2] for the system of parameters for a Buchsbaum local ring, which is a typical example of d-sequences.

Proposition 3.2 ([12 Theorem 1.3]). Let M be an A-module and x_1, \ldots, x_d a d-sequence on M. If we put $q = (x_1, \ldots, x_d)$, then

$$(x_1, \ldots, x_{i-1})M : x_i \cap q^n M = (x_1, \ldots, x_{i-1})q^{n-1}M$$

for any $n > 0$ and $1 \leq i \leq d$.

A p-standard system of parameters has several nice properties. The following two properties are given in [17].

Proposition 3.3 ([17 Proposition 2.8]). Let M be a finitely generated A-module of dimension $d > 0$ and x_1, \ldots, x_d a p-standard system of parameters of type s for M. Then x_{s+1}, \ldots, x_d is a $u.s.d$-sequence on $M/(y_1, \ldots, y_u)M$ where y_1, \ldots, y_u is a subsystem of parameters for $M/(x_{s+1}, \ldots, x_d)M$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proposition 3.4 ([17] Theorem 2.9]). Let M be a finitely generated A-module of dimension $d > 0$, x_1, \ldots, x_d a p-standard system of parameters of type s for M, and y_1, \ldots, y_u a subsystem of parameters for $M/(x_1, \ldots, x_d)M$ where $2 \leq i \leq d$ and $1 \leq u < i$. If $y_u \in \mathfrak{a}(M)$ or $y_u \in \mathfrak{a}(M/(x_1, \ldots, x_d)M)$, then

$$(y_1, \ldots, y_{u-1}, \{x_{\lambda} \mid \lambda \in \Lambda\})M : y_u = (y_1, \ldots, y_{u-1}, \{x_{\lambda} \mid \lambda \in \Lambda\})M : y_u$$

for any $1 \leq v \leq u$ and $\Lambda \subseteq \{i, \ldots, d\}$.

The next proposition is not in [17] but we need it to prove Theorem 1.1. The author is inspired by [8] Theorem 2.6.

Proposition 3.5. Let M be a finitely generated A-module of dimension $d > 0$, x_1, \ldots, x_d a p-standard system of parameters of type s for M and y_1, \ldots, y_u a subsystem of parameters for $M/(x_1, \ldots, x_d)M$ where $1 \leq i \leq d$ and $1 \leq u < i$. Then x_i, \ldots, x_j is a d-sequence on $M/(y_1, \ldots, y_u, x_{j+1}, \ldots, x_d)M$ for any $i \leq j \leq d$.

Proof. Let $i \leq l \leq j$ be an integer. By applying Proposition 3.4 to a subsystem of parameters $y_1, \ldots, y_u, x_1, \ldots, x_l$ for $M/(x_{l+1}, \ldots, x_d)M$ and a subset $\{j+1, \ldots, d\}$ of $\{l+1, \ldots, d\}$, we obtain

$$(y_1, \ldots, y_u, x_1, \ldots, x_{l-1}, x_{j+1}, \ldots, x_d)M : x_k x_l = (y_1, \ldots, y_u, x_1, \ldots, x_{l-1}, x_{j+1}, \ldots, x_d)M : x_l$$

for any $i \leq k \leq l$. \hfill \Box

The following theorem and corollaries are improvements of Theorem 3.1, Corollaries 3.2 and 3.3 of [17], respectively. The old theorems require that all n_i, \ldots, n_j are positive but new ones require only that all n_i, \ldots, n_j are nonnegative.

Theorem 3.6. Let M be a finitely generated A-module of dimension $d > 0$ and x_1, \ldots, x_d a p-standard system of parameters of type s for M. We put $q_i = (x_1, \ldots, x_d)$ for all $1 \leq i \leq d$. Then, for any integers $1 \leq i \leq j \leq d$ and $n_i, \ldots, n_j \geq 0$, the following statements hold:

(A_{ij}) If y_1, \ldots, y_u is a subsystem of parameters for $M/q_i M$ and if $n_k > 0$ for some integer $i \leq k \leq j$, then

$$(y_1, \ldots, y_u, x_i, \ldots, x_{i-1})M : x_i \cap [(y_1, \ldots, y_u)M + q_i^{n_i}\cdots q_j^{n_j}M]$$

$$(y_1, \ldots, y_u)M + (x_1, \ldots, x_{i-1})q_i^{n_i}\cdots q_k^{n_k-1}\cdots q_j^{n_j}M$$

for arbitrary integer $k \leq l \leq d$.

(B_{ij}): If y_1, \ldots, y_u is a subsystem of parameters for $M/q_i M$ and if $n_k > 0$ for some integer $i \leq k \leq j$, then

$$[(y_1, \ldots, y_{u-1})M + (x_1, \ldots, x_l)q_i^{n_i}\cdots q_j^{n_j}M] : y_u$$

$$= (y_1, \ldots, y_u)M + (x_1, \ldots, x_l)q_i^{n_i}\cdots q_j^{n_j}M : y_u + (y_1, \ldots, y_{u-1})M : y_u$$

for arbitrary integer $k \leq l \leq d$. In particular, by letting $l = d$, we have

$$[(y_1, \ldots, y_{u-1})M + q_i^{n_i}\cdots q_k^{n_k+1}\cdots q_j^{n_j}M] : y_u$$

$$= q_k [(y_1, \ldots, y_{u-1})M + q_i^{n_i}\cdots q_j^{n_j}M] : y_u + (y_1, \ldots, y_{u-1})M : y_u.$$
(C$_i$): If y_1, \ldots, y_u is a subsystem of parameters for M/q_iM and if $n_i > 0$, then

\begin{equation}
[(y_1, \ldots, y_{u-1})M + q_i^{n_i} \cdots q_j^{n_j}M]: y_u \\
\subseteq (y_1, \ldots, y_{u-1})M: y_u + q_i^{n_i-1} \cdots q_j^{n_j}M.
\end{equation}

(D$_i$): If y_1, \ldots, y_u is a subsystem of parameters for M/q_iM and if $n_i > 0$, then

\begin{equation}
[(y_1, \ldots, y_{u-1})M + q_i^{n_i} \cdots q_j^{n_j}M]: y_u \\
\subseteq (y_1, \ldots, y_{u-1})M: y_u + q_i^{n_i-1} \cdots q_j^{n_j}M.
\end{equation}

(E$_i$): Let y_1, \ldots, y_u be a subsystem of parameters for M/q_kM where $2 \leq k \leq i$ and $1 \leq u < k$. If $y_u \in a(M/q_kM)$ or $y_u \in a(M)$ and if $n_i > 0$, then

\begin{equation}
[(y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i} \cdots q_j^{n_j}M]: y_u \\
= [(y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i} \cdots q_j^{n_j}M]: y_u
\end{equation}

for any $1 \leq v \leq u$ and $\Lambda \subseteq \{k, \ldots, i-1\}$.

Proof. We work by induction on $j - i$. First we assume that $i = j$.

(A$_i$): Since x_1, \ldots, x_d is a d-sequence on $M/(y_1, \ldots, y_u)M$, (3.6.1) coincides with Proposition 3.2.

(B$_i$): Let a be an element in the left-hand side of (3.6.2) and put $y_ua = xib + c$ with $b \in q_i^{n_i}M$ and $c \in (y_1, \ldots, y_{u-1})M + (x_i, \ldots, x_{i-1})q_i^{n_i}M$. By using (A$_ii$), we obtain

$$b \in (y_1, \ldots, y_u, x_i, \ldots, x_{i-1})M: x_i \cap q_i^{n_i}M$$

$$\subseteq (y_1, \ldots, y_u)M + (x_i, \ldots, x_{i-1})q_i^{n_i-1}M.$$

Let $b = y ua' + c'$ with $c' \in (y_1, \ldots, y_{u-1})M + (x_i, \ldots, x_{i-1})q_i^{n_i-1}M$. Then $a' \in [(y_1, \ldots, y_{u-1})M + q_i^{n_i}M]: y_u$ and

$$a - xa' \in [(y_1, \ldots, y_{u-1})M + (x_i, \ldots, x_{i-1})q_i^{n_i}M]: y_u.$$

By induction on l, we find that a is in the right-hand side of (3.6.2). The opposite inclusion is obvious.

(C$_i$): By using (B$_ii$) repeatedly, we have

$$[(y_1, \ldots, y_{u-1})M + q_i^{n_i}M]: y_u = (y_1, \ldots, y_{u-1})M: y_u$$

$$+ q_i^{n_i-1} [(y_1, \ldots, y_{u-1})M + q_iM]: y_u$$

$$\subseteq (y_1, \ldots, y_{u-1})M: y_u + q_i^{n_i-1}M.$$

(D$_i$): If $n_i = 1$, then the right-hand side of (3.6.3) equals $(y_1, \ldots, y_{u-1}, x_i)M$ and hence contains the left-hand side.

Assume that $n_i > 1$. Let a be an element in M such that x_ia is in the left-hand side of (3.6.4). Then

$$y_uax_ia \in [(y_1, \ldots, y_{u-1})M + q_i^{n_i}M] \cap (y_1, \ldots, y_{u-1}, x_i)M$$

$$= (y_1, \ldots, y_{u-1})M: x_iq_i^{n_i-1}M$$

because of (A$_ii$). Hence

$$x_ia \in [(y_1, \ldots, y_{u-1})M + x_iq_i^{n_i-1}M]: y_u$$

$$= (y_1, \ldots, y_{u-1})M: y_u + x_i[(y_1, \ldots, y_{u-1})M + q_i^{n_i-1}M]: y_u.$$
Here we used \((B_{ii})\). By applying Proposition 3.4 to a subsystem of parameters \(y_1, \ldots, y_a, x_i\) for \(M/q_{i+1}M\), we have
\[
(y_1, \ldots, y_{a-1})M : y_ux_i = (y_1, \ldots, y_{a-1})M : x_i
\]
and hence
\[
(y_1, \ldots, y_{a-1})M : y_u \cap x_iM = x_i[(y_1, \ldots, y_{a-1})M : y_ux_i] \subseteq (y_1, \ldots, y_{a-1})M.
\]
Therefore
\[
x_i^{a} \in x_i \{(y_1, \ldots, y_{a-1})M + q_i^{n_i}M : y_u\} + (y_1, \ldots, y_{a-1})M : y_u \cap x_iM \subseteq (y_1, \ldots, y_{a-1})M + q_i^{n_i}M : y_u + (y_1, \ldots, y_{a-1})M.
\]

\((E_{ii})\): By using \((B_{ii})\), we have
\[
[(y_1, \ldots, y_{a-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i}M : y_vy_u] = (y_1, \ldots, y_{a-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_vy_u + q_i^{n_i-1}[(y_1, \ldots, y_{a-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_iM : y_vy_u].
\]
Applying Proposition 3.4 to a subsystem of parameters \(y_1, \ldots, y_a\) for \(M/q_kM\) and two subsets of \(\{k, \ldots, d\}\): \(\Lambda\) and \(\Lambda \cup \{i, \ldots, d\}\), we obtain
\[
(y_1, \ldots, y_{a-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_vy_u + q_i^{n_i-1}[(y_1, \ldots, y_{a-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_iM : y_vy_u] = (y_1, \ldots, y_{a-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_vy_u + q_i^{n_i-1}[(y_1, \ldots, y_{a-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_iM : y_vy_u] = [(y_1, \ldots, y_{a-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i}M : y_u.
\]
Thus (3.6.6) is shown.

Next we assume that \(j > i\) and prove \((A_{ij})-(E_{ij})\). If \(n_i = 0\), then \((A_{ij})\) and \((B_{ij})\) are contained in \((A_{i+1,j})\) and \((B_{i+1,j})\), respectively. Therefore we may assume that \(n_i > 0\). Similarly we may also assume that \(n_j > 0\).

\((A_{ij})\): Let \(a\) be an element in the left-hand side of (3.6.1). If \(k = l = i\), then
\[
a \in (y_1, \ldots, y_a)M : x_i \cap (y_1, \ldots, y_a, x_i, \ldots, x_d)M = (y_1, \ldots, y_a)M.
\]

Otherwise, by using \((A_{i+1,j})\), we have
\[
a \in (y_1, \ldots, y_a, x_i, x_k, \ldots, x_{i-1})M : x_i \cap [(y_1, \ldots, y_a, x_i)M + q_i^{n_i+n_{i-1}+1} \cdots q_j^{n_j}M] = \begin{cases} (y_1, \ldots, y_a, x_i)M + (x_{i+1}, \ldots, x_{i-1})q_i^{n_i+n_{i-1}+1} \cdots q_j^{n_j}M & \text{if } k \leq i + 1, \\ (y_1, \ldots, y_a, x_i)M + (x_k, \ldots, x_{i-1})q_i^{n_i+n_{i-1}+1} \cdots q_k^{n_k-1} \cdots q_j^{n_j}M & \text{if } k > i + 1 \end{cases} = (y_1, \ldots, y_a, x_i)M + (x_k, \ldots, x_{i-1})q_i^{n_i} \cdots q_k^{n_k-1} \cdots q_j^{n_j}M.
\]
Taking the intersection with \((y_1, \ldots, y_a)M + q_i^{n_i} \cdots q_j^{n_j}M\), we obtain
\[
a \in (y_1, \ldots, y_a)M + (x_k, \ldots, x_{i-1})q_i^{n_i} \cdots q_k^{n_k-1} \cdots q_j^{n_j}M + x_iM \cap [(y_1, \ldots, y_a)M + q_i^{n_i} \cdots q_j^{n_j}M].
\]
Because of \((C_{i+1,j})\),
\[
x_i M \cap [(y_1, \ldots, y_u) M + q_i^{n_i} \cdots q_j^{n_j} M]
\]
\[
= x_i q_i^{n_i-1} \cdots q_j^{n_j} M
\]
\[
+ x_i M \cap [(y_1, \ldots, y_u) M + q_i^{n_i+n_{i+1}} \cdots q_j^{n_j} M]
\]
\[
= x_i q_i^{n_i-1} \cdots q_j^{n_j} M + x_i [(y_1, \ldots, y_u) M + q_i^{n_i+n_{i+1}} \cdots q_j^{n_j} M] x_i
\]
\[
\subseteq x_i q_i^{n_i-1} \cdots q_j^{n_j} M + x_i [(y_1, \ldots, y_u) M : x_i + q_i^{n_i+n_{i+1}} \cdots q_j^{n_j} M]
\]
\[
\subseteq (y_1, \ldots, y_u) M + x_i q_i^{n_i-1} \cdots q_j^{n_j} M.
\]
Therefore
\[
a \in (y_1, \ldots, y_u) M + (x_k, \ldots, x_{l-1}) q_i^{n_i} \cdots q_k^{n_k-1} \cdots q_j^{n_j} M
\]
\[
+ x_i q_i^{n_i-1} \cdots q_j^{n_j} M.
\]
If \(k = i\), then the proof is completed. If \(k > i\), then we work by induction on \(n_i\).
Let \(a = x_i b + c\) with \(b \in q_i^{n_i-1} \cdots q_j^{n_j} M\) and
\[
c \in (y_1, \ldots, y_u) M + (x_k, \ldots, x_{l-1}) q_i^{n_i} \cdots q_k^{n_k-1} \cdots q_j^{n_j} M.
\]
If we apply Proposition \((3.6.2)\) to a subsystem of parameters \(y_1, \ldots, y_u, x_k, \ldots, x_{l-1}, x_i, x_l\) for \(M/q_{i+1} M\), then we have
\[
b \in (y_1, \ldots, y_u, x_k, \ldots, x_{l-1}) M : x_i x_l = (y_1, \ldots, y_u, x_k, \ldots, x_{l-1}) M : x_l.
\]
If \(n_i = 1\), then \((A_{i+1,j})\) says that
\[
b \in (y_1, \ldots, y_u, x_k, \ldots, x_{l-1}) M : x_l \cap q_i^{n_i+1} \cdots q_j^{n_j} M
\]
\[
\subseteq (y_1, \ldots, y_u) M + (x_k, \ldots, x_{l-1}) q_i^{n_i+1} \cdots q_k^{n_k-1} \cdots q_j^{n_j} M
\]
and hence \(a = x_i b + c\) is in the right-hand side of \((3.6.1)\). If \(n_i > 1\), then we obtain
\[
b \in (y_1, \ldots, y_u, x_k, \ldots, x_{l-1}) M : x_l \cap q_i^{n_i-1} \cdots q_j^{n_j} M
\]
\[
\subseteq (y_1, \ldots, y_u) M + (x_k, \ldots, x_{l-1}) q_i^{n_i-1} \cdots q_k^{n_k-1} \cdots q_j^{n_j} M
\]
by the induction hypothesis. Thus \(a = x_i b + c\) is also in the right-hand side of \((3.6.1)\).
\((B_{ij})\): Let \(a\) be an element in the left-hand side of \((3.6.2)\) and put \(y_u a = x_i b + c\) with \(b \in q_i^{n_i} \cdots q_j^{n_j} M\) and \(c \in (y_1, \ldots, y_u-1) M + (x_k, \ldots, x_{l-1}) q_i^{n_i} \cdots q_j^{n_j} M\). Then
\[
b \in (y_1, \ldots, y_u, x_k, \ldots, x_{l-1}) M : x_l \cap q_i^{n_i} \cdots q_j^{n_j} M
\]
\[
\subseteq (y_1, \ldots, y_u) M + (x_k, \ldots, x_{l-1}) q_i^{n_i} \cdots q_k^{n_k-1} \cdots q_j^{n_j} M.
\]
Here we used \((A_{ij})\). If we put \(b = y_u a' + c'\) with
\[
c' \in (y_1, \ldots, y_u-1) M + (x_k, \ldots, x_{l-1}) q_i^{n_i} \cdots q_k^{n_k-1} \cdots q_j^{n_j} M,
\]
then \(a' \in [(y_1, \ldots, y_u-1) M + q_i^{n_i} \cdots q_j^{n_j} M] : y_u\) and
\[
a - x_i a' \in [(y_1, \ldots, y_u-1) M + (x_k, \ldots, x_{l-1}) q_i^{n_i} \cdots q_j^{n_j} M] : y_u.
\]
By induction on \(l\), we find that \(a\) is in the right-hand side of \((3.6.2)\). The opposite inclusion is obvious.
\((C_{ij})\): We first show that
\[
(y_1, \ldots, y_u-1, x_i) M : y_u \cap (y_1, \ldots, y_u-1, x_i, \ldots, x_l) M
\]
\[
= (y_1, \ldots, y_u-1, x_i) M
\]
for all $i \leq l \leq d$. We work by induction on l. If $l = i$, then there exists nothing to prove. Assume that $l > i$ and let a be an element in the left-hand side of (3.6.7).

If we put $a = x_ib + c$ with $c \in (y_1, \ldots, y_{u-1}, x_i, \ldots, x_{l-1})M$, then

$$b \in (y_1, \ldots, y_{u-1}, x_i, \ldots, x_{l-1})M : y_u x_i = (y_1, \ldots, y_{u-1}, x_i, \ldots, x_{l-1})M : x_i.$$

Here we applied Proposition 3.3 to a subsystem of parameters $y_1, \ldots, y_{u-1}, x_i, \ldots, x_{l-1}, y_u, x_i$ for $M/q_{l+1}M$. Thus we obtain

$$a = x_ib + c \in (y_1, \ldots, y_{u-1}, x_i)M : y_u \cap (y_1, \ldots, y_{u-1}, x_i, \ldots, x_{l-1})M$$

$$= (y_1, \ldots, y_{u-1}, x_i)M$$

by the induction hypothesis.

Next we show (3.6.3). By using (B_{ij}), we may assume that $n_i = 1$. Let a be an element in the left-hand side of (3.6.3). Then

$$a \in [(y_1, \ldots, y_{u-1}, x_i)M : y_u + q_{i+1}^{n_j+1} \cdots q_j^n M] : y_u$$

$$\subseteq (y_1, \ldots, y_{u-1}, x_i)M : y_u + q_{i+1}^{n_j+1} \cdots q_j^n M$$

because of $(C_{i+1,j})$. On the other hand, since $n_j > 0$, we obtain

$$a \in [(y_1, \ldots, y_{u-1})M + q_i^2 M] : y_u$$

$$\subseteq (y_1, \ldots, y_{u-1})M : y_u + q_i M.$$

Here we used (C_u). Hence

$$a \in [(y_1, \ldots, y_{u-1}, x_i)M : y_u + q_{i+1}^{n_j+1} \cdots q_j^n M] \cap [(y_1, \ldots, y_{u-1})M : y_u + q_i M]$$

$$= (y_1, \ldots, y_{u-1})M : y_u + q_{i+1}^{n_j+1} \cdots q_j^n M + (y_1, \ldots, y_{u-1}, x_i)M : y_u \cap q_i M$$

$$= (y_1, \ldots, y_{u-1})M : y_u + q_{i+1}^{n_j+1} \cdots q_j^n M + x_i M.$$

Here we used (3.6.7). Taking the intersection with

$$[(y_1, \ldots, y_{u-1})M + q_{i+1}^{n_j+1} \cdots q_j^n M] : y_u,$$

we obtain

$$a \in (y_1, \ldots, y_{u-1})M : y_u + q_{i+1}^{n_j+1} \cdots q_j^n M$$

$$+ x_i \{[(y_1, \ldots, y_{u-1})M + q_{i+1}^{n_j+1} \cdots q_j^n M] : y_u x_i\}.$$

By applying $(E_{i+1,j})$ to a subsystem of parameters y_1, \ldots, y_u, x_i for $M/q_{i+1}M$, we have

$$[(y_1, \ldots, y_{u-1})M + q_{i+1}^{n_j+1} \cdots q_j^n M] : y_u x_i = [(y_1, \ldots, y_{u-1})M + q_{i+1}^{n_j+1} \cdots q_j^n M] : x_i.$$

Therefore $a \in (y_1, \ldots, y_{u-1})M : y_u + q_{i+1}^{n_j+1} \cdots q_j^n M$.

(D_{ij}): Let a be an element in M such that $x_i a$ is in the left-hand side of (3.6.4). Then

$$y_u x_i a \in x_i M \cap [(y_1, \ldots, y_{u-1})M + q_i^{n_j} \cdots q_j^n M]$$

$$\subseteq (y_1, \ldots, y_{u-1})M + x_i q_i^{n_j-1} \cdots q_j^n M.$$

Here we used (A_{ij}). We put $y_u x_i a = x_i b + c$ with $b \in q_i^{n_j-1} \cdots q_j^n M$ and $c \in (y_1, \ldots, y_{u-1})M$. Then

$$b \in (y_1, \ldots, y_u)M : x_i \cap q_j M$$

$$\subseteq (y_1, \ldots, y_u)M : x_i \cap q_i M$$

$$\subseteq (y_1, \ldots, y_u)M.$$
because $n_j > 0$ and x_i, \ldots, x_d is a d-sequence on $M/(y_1, \ldots, y_u)M$. If we put $b = y_u a' + c'$ with $c' \in (y_1, \ldots, y_{u-1})M$, then

$$a' \in [(y_1, \ldots, y_{u-1})M + q_i^{n_{i-1}} \cdots q_j^{n_j} M] : y_u$$

and

$$x_i(a - a') \in (y_1, \ldots, y_{u-1})M : y_u \cap x_i M \subseteq (y_1, \ldots, y_{u-1})M.$$

Here we used \((3.6.6)\) again. Therefore

$$x_i a \in (y_1, \ldots, y_{u-1})M + x_i \{[(y_1, \ldots, y_{u-1})M + q_i^{n_{i-1}} \cdots q_j^{n_j} M] : y_u \}.$$

\((E_{ij})\): We may assume that $n_i = 1$ in the same way as the proof of \((E_{i})\). We divide the proof into two cases.

First we assume that $n_{i+1} + \cdots + n_j = 1$, that is, $n_{i+1} = \cdots = n_{j-1} = 0$ and $n_j = 1$. We show that

\[(3.6.8)\] \[[(y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\})M + (x_1, \ldots, x_{l-1}, y_j, \ldots, x_d)q_iM] : y_v y_u \]

for all $i \leq l \leq j$ by descending induction on l. If $l = j$, then \((3.6.8)\) coincides with \((E_v)\). Assume that $l < j$ and let a be an element in the left-hand side of \((3.6.8)\). The induction hypothesis says that

$$a \in [(y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\})M + (x_1, \ldots, x_j, \ldots, x_d)q_iM] : y_u.$$

We put $y_u a = x_j b + c$ with $b \in q_i M$ and

$$c \in (y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\})M + (x_1, \ldots, x_{l-1}, y_j, \ldots, x_d)q_i M.$$

On the other hand, Proposition \(3.4\) says that

$$a \in (y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\}, x_1, \ldots, x_{l-1}, y_j, \ldots, x_d)M : y_v y_u$$

$$= (y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\}, x_1, \ldots, x_{l-1}, x_j, \ldots, x_d)M : y_u.$$

Hence

$$b \in (y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\}, x_1, \ldots, x_{l-1}, x_j, \ldots, x_d)M : x_i \cap q_i M$$

$$\subseteq (y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\}, x_1, \ldots, x_{l-1}, x_j, \ldots, x_d)M$$

because x_1, \ldots, x_{j-1} is a d-sequence on $M/(y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\}, x_j, \ldots, x_d)M$.

Therefore

$$y_u a = x_j b + c \in (y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\})M + (x_1, \ldots, x_{l-1}, x_j, \ldots, x_d)q_i M.$$

Thus \((3.6.8)\) is proved. If we put $l = i$, then we obtain

$$[(y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\})M + q_i q_j M] : y_v y_u$$

$$= [(y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\})M + q_i q_j M] : y_u.$$

Next we assume that $n_{i+1} + \cdots + n_j > 1$. Let

$$a \in [(y_1, \ldots, y_{v-1}, \{x_\lambda | \lambda \in \Lambda\})M + q_i q_{i+1}^{n_{i+1}} \cdots q_j^{n_j} M] : y_v y_u.$$
Then \((E_{i+1,j})\) says that
\[
 a \in [(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\}, x_i)M + q_i^{n_i+1} \cdots q_j^n M] : y_v y_u
\]
\[
= [(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\}, x_i)M + q_i^{n_i+1} \cdots q_j^n M] : y_u.
\]

Therefore
\[
y_u a \in [(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i q_i^{n_i+1} \cdots q_j^n M] : y_v
\]
\[
\cap [(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\}, x_i)M + q_i^{n_i+1} \cdots q_j^n M]
\]
\[
= (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^n M
\]
\[
+ [(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i q_i^{n_i+1} \cdots q_j^n M] : y_v \cap x_i M
\]
\[
= (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^n M
\]
\[
+ x_i [(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i q_i^{n_i+1} \cdots q_j^n M] : y_v.
\]

Here we used \((D_{ij})\) to show the second equality. We put \(y_u a = x_i b + c\) with
\[(3.6.9)\]
\[
b \in [(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^n M] : y_v
\]
and
\[
c \in (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + a q_i^{n_i+1} \cdots q_j^n M.
\]

By applying \((C_{i+1,j})\) to a subsystem of parameters \(y_1, \ldots, y_{v-1}, y_u, \{x_\lambda \mid \lambda \in \Lambda\}, x_i\) for \(M/q_i+1 M\), we obtain
\[(3.6.10)\]
\[
b \in [(y_1, \ldots, y_{v-1}, y_u, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^n M] : x_i
\]
\[
\subseteq (y_1, \ldots, y_{v-1}, y_u, \{x_\lambda \mid \lambda \in \Lambda\})M : x_i + q_i q_i^{n_i+1} \cdots q_j^n M.
\]

On the other hand, since \(n_i+1 + \cdots + n_j > 1\), we have
\[(3.6.11)\]
\[
b \in [(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^2 M] : y_v
\]
\[
\subseteq (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_v + q_i+1 M
\]
by using \((C_{i+1,i+1})\).

Furthermore, by applying Proposition \[3.3\] to a subsystem of parameters \(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\}, y_v, x_i\) for \(M/q_i+1 M\), we obtain
\[(3.6.12)\]
\[
(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_v
\]
\[
\subseteq (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_v x_i
\]
\[
= (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : x_i.
\]

Hence, by taking the intersection of \[(3.6.10)\] and \[(3.6.11)\], we have
\[
b \in (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_v + q_i q_i^{n_i+1} \cdots q_j^n M
\]
\[
+ (y_1, \ldots, y_{v-1}, y_u, \{x_\lambda \mid \lambda \in \Lambda\})M : x_i \cap q_i+1 M
\]
\[
\subseteq (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_v + y_v M + q_i q_i^{n_i+1} \cdots q_j^n M.
\]

Here we apply Proposition \[3.22\] to a \(d\)-sequence \(x_i, \ldots, x_d\) on
\[
M/(y_1, \ldots, y_{v-1}, y_u, \{x_\lambda \mid \lambda \in \Lambda\})M.
\]
Taking the intersection with (3.6.3), we obtain
\[b \in (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_v + q_i^{n_{i+1}} \cdots q_j^{n_j}M \]
+ \[((y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_{i+1}} \cdots q_j^{n_j}M) : y_v \cap y_uM \]
= \((y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_v + q_i^{n_{i+1}} \cdots q_j^{n_j}M \)
+ \[y_u((y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_{i+1}} \cdots q_j^{n_j}M) : y_vy_u \]
= \((y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_v + q_i^{n_{i+1}} \cdots q_j^{n_j}M \).

Here we used \((E_{i+1,j})\) to show the last equality. By using (3.6.12) again, we find that
\[y_ua = x_ib + c \in (y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_{i+1}} \cdots q_j^{n_j}M. \]

That is,
\[a \in [(y_1, \ldots, y_{v-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_{i+1}} \cdots q_j^{n_j}M] : y_u. \]

The opposite inclusion is obvious. The proof is completed.

Corollary 3.7. With the same notation as Theorem 3.6, we have
\[[(y_1, \ldots, y_u)M + q_i^{n_i} \cdots q_j^{n_j}M] : x_{i-1}^{n_{i-1}} \subseteq [(y_1, \ldots, y_u)M + q_i^{n_i} \cdots q_j^{n_j}M] : q_{i-1} \]
for any integers \(2 \leq i \leq j \leq d, n_{i-1} > 0, n_i, \ldots, n_j \geq 0\) and for any subsystem of parameters \(y_1, \ldots, y_u\) for \(M/q_{i-1}M\).

Proof. If \(n_i = \cdots = n_j = 0\), then the equality is trivial. Therefore we may assume that one of \(n_i, \ldots, n_j\) is positive. We may also assume that \(n_{i-1} = 1\) by using Theorem 3.6.\((E_{i,j})\). Then we have
\[[(y_1, \ldots, y_u)M + q_i^{n_i} \cdots q_j^{n_j}M] : x_{i-1} \subseteq (y_1, \ldots, y_u)M : x_{i-1} + q_i^{n_{i-1}} \cdots q_j^{n_j}M \]
by applying Theorem 3.6.\((C_{i,j})\) to a subsystem of parameters \(y_1, \ldots, y_u, x_{i-1}\) for \(M/q_iM\). Since \(x_{i-1}, \ldots, x_d\) is a d-sequence on \(M/(y_1, \ldots, y_u)M\),
\[(y_1, \ldots, y_u)M : x_{i-1} \subseteq (y_1, \ldots, y_u)M : q_{i-1}. \]

Therefore
\[q_{i-1}[(y_1, \ldots, y_u)M + q_i^{n_i} \cdots q_j^{n_j}M] : x_{i-1} \subseteq (y_1, \ldots, y_u)M + q_i^{n_i} \cdots q_j^{n_j}M. \]

The opposite inclusion is trivial.

Corollary 3.8. With the same notation of Theorem 3.6, we let \(k\) be an integer such that \(1 \leq k \leq d\) and \(y_1, \ldots, y_u\) a subsystem of parameters for \(M/q_kM\). Assume that
\[[(y_1, \ldots, y_{u-1})M + q_kM] : y_u = (y_1, \ldots, y_{u-1})M + q_kM. \]

Then
\[(y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_u = (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M \]
for any \(\Lambda \subseteq \{k, \ldots, d\}\). Furthermore
\[[(y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i} \cdots q_j^{n_j}M] : y_u = (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i} \cdots q_j^{n_j}M \]
for any integers \(k \leq i \leq j, n_i, \ldots, n_j \geq 0\), and \(\Lambda \subseteq \{k, \ldots, i-1\}\).
Proof. We first show (3.8.1) by descending induction on the number of elements in Λ. If $\Lambda = \{k, \ldots, d\}$, then there exists nothing to prove. Assume that $\Lambda \neq \{k, \ldots, d\}$ and let l be an element in $\{k, \ldots, d\} \setminus \Lambda$. Let a be an element in the left-hand side of (3.8.1). Then

$$a \in (y_1, \ldots, y_{u-1}, x_l, \{x_\lambda \mid \lambda \in \Lambda\})M : y_u = (y_1, \ldots, y_{u-1}, x_l, \{x_\lambda \mid \lambda \in \Lambda\})M$$

because of the induction hypothesis. We put $a = xb + c$ with

$$c \in (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M.$$

Since $x_l \in a(M)$ or $x_l \in a(M/q_{i+1}M)$, we obtain

$$b \in (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_u x_l = (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : x_l$$

by using Proposition 3.3. Therefore $a = xb + c \in (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M$.

Next we show that (3.8.2). If $n_i = \cdots = n_j = 0$, then the equality is trivial. We assume that $n_i, n_j > 0$ and we work by induction on $j - i$. If $i = j$, then

$$((y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i}M : y_u$$

$$= (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M : y_u$$

$$+ q_i^{n_i-1}[(y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_iM : y_u]$$

$$= (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i}M.$$

Here we used Theorem 3.6 (B.1) and (3.8.1). Assume that $j > i$. We may assume that $n_i = 1$ by using Theorem 3.6 (B.1). Let a be an element of the left-hand side of (3.8.2). The induction hypothesis says that

$$[(y_1, \ldots, y_{u-1}, x_i, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^{n_j}M] : y_u$$

$$= (y_1, \ldots, y_{u-1}, x_i, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^{n_j}M.$$

Therefore

$$a \in [(y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^{n_j}M : y_u$$

$$\cap [(y_1, \ldots, y_{u-1}, x_i, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^{n_j}M]$$

$$= (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^{n_j}M + [(y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^{n_j}M : y_u \cap x_iM$$

$$\subseteq (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^{n_j}M + x_i[(y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^{n_j}M : y_u]$$

$$= (y_1, \ldots, y_{u-1}, \{x_\lambda \mid \lambda \in \Lambda\})M + q_i^{n_i+1} \cdots q_j^{n_j}M.$$

Here we used Theorem 3.6 (D.1) and the induction hypothesis.

4. THE PROOF OF THEOREM 1.1

Before the proof of Theorem 1.1, we give some statements on \mathbb{Z}^r-graded rings. Let $R = \bigoplus_{n_r \geq 0} R(n_1, \ldots, n_r)$ be a Noetherian \mathbb{Z}^r-graded ring. For such a ring, let $R_+ = \bigoplus_{(n_1, \ldots, n_r) \neq (0, \ldots, 0)} R(n_1, \ldots, n_r)$.

Proposition 4.1. Let M be a finitely generated graded R-module and b an ideal in $R(0, \ldots, 0)$. Then there exists an integer n such that

$$[H^p_{bR_R}(M)](n_1, \ldots, n_r) = 0$$

unless $n_1, \ldots, n_r < n$ for all $p \geq 0$.

Proof. If $b = (0)$, then we can prove the assertion in the same way as [28, no. 66 Théorème 2]. The spectral sequence $E_2^{pq} = H_p^b R_q^b (-) \Rightarrow H_{b+R^b}^q (-)$ says that the assertion holds in general.

Let $\varphi: \mathbb{Z}' \to \mathbb{Z}^r$ be a group homomorphism satisfying $\varphi(N') \subseteq N^r$. We put

$$R^\varphi = \bigoplus_{m_1, \ldots, m_r \geq 0} \left(\bigoplus_{n_1, \ldots, n_r = (m_1, \ldots, m_r)} R_{(n_1, \ldots, n_r)} \right),$$

which is a \mathbb{Z}^r-graded ring. For a graded R-module M, let

$$M^\varphi = \bigoplus_{m_1, \ldots, m_r \in \mathbb{Z}} \left(\bigoplus_{n_1, \ldots, n_r = (m_1, \ldots, m_r)} M_{(n_1, \ldots, n_r)} \right),$$

which is a graded R^φ-module. We know that $[H_{b+R^b}^p(M)]^\varphi = H_{b+R^b+R^\varphi}^p(M^\varphi)$ for any ideal b in $R(0, \ldots, 0)$. See Lemma 1.1 of [15].

The following proposition is contained in the proof of [15, Theorem 2.2].

Proposition 4.2. Let $M = \bigoplus_{n_1, \ldots, n_r \geq 0} M_{(n_1, \ldots, n_r)}$ be a finitely generated graded R-module and b an ideal in $R(0, \ldots, 0)$. We put

$$S = \bigoplus_{n_1, \ldots, n_r+1 \geq 0} R_{(n_1, \ldots, n_r-1, n_r+n_r+1)}$$

and

$$N = \bigoplus_{n_1, \ldots, n_r+1 \geq 0} M_{(n_1, \ldots, n_r-1, n_r+n_r+1)}.$$

Then S is a Noetherian \mathbb{Z}^{r+1}-graded ring and N a finitely generated graded S-module.

If there exists an integer p_0 such that

(4.2.1) $H_{b+R^b}^p(M) = 0$ for all $p > p_0$,

then

$$H_{b+S+S^+}^p(N) = 0 \text{ for all } p > p_0 + 1.$$

If

(4.2.2) $[H_{b+R^b}^p(M)]_{(n_1, \ldots, n_r)} = 0$ unless $n_1, \ldots, n_r < 0$

for all p, then

$$[H_{b+S+S^+}^p(N)]_{(n_1, \ldots, n_r+1)} = 0 \text{ unless } n_1, \ldots, n_r+1 < 0$$

for all p. If, in addition, there exist integers $p_0 > 0$ and $n_0 < 0$ such that

(4.2.3) $[H_{b+R^b}^p(M)]_{(n_1, \ldots, n_r)} = 0$ whenever $n_1 + \cdots + n_r \leq n_0$

for all $p < p_0$, then

$$[H_{b+S+S^+}^p(N)]_{(n_1, \ldots, n_r+1)} = 0 \text{ whenever } n_1 + \cdots + n_r+1 \leq n_0$$

for all $p < p_0 + 1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. It is easy to show that S is a \mathbb{Z}^{r+1}-graded ring and N a graded S-module. First we show that S is Noetherian. To do this, we may assume that $r = 1$ without loss of generality. Since R is Noetherian, R_0 is also and R is generated by finitely generated R_0-modules R_1, \ldots, R_k over R_0. Then $S = S(0, 0)[S(n_1, n_2) \mid n_1 + n_2 \leq k]$. Indeed, if $i + j > k$, then $R_{i+j} = R_iR_{i+j-1} + \cdots + R_kR_{i+j-k}$. Therefore

$$S_{(i,j)} = \begin{cases} \sum_{l=1}^{k} S_{(l,0)}S_{(i-l,j)}, & \text{if } i \geq k; \\ \sum_{l=1}^{k} S_{(l,0)}S_{(i-l,j)} + \sum_{m=1}^{k-i} S_{(i,m)}S_{(0,j-m)}, & \text{if } i < k. \end{cases}$$

We can show that $S_{(i,j)} \subset S(0, 0)[S(n_1, n_2) \mid n_1 + n_2 \leq k]$ by induction on $i + j$. Similarly we can prove that N is a finitely generated S-module.

Next we consider local cohomology modules. Let

$$I = \bigoplus_{n_1, \ldots, n_r \geq 0, n_{r+1} > 0} R_{(n_1, \ldots, n_r-1, n_r+n_{r+1})}$$

and

$$L_1 = \bigoplus_{n_1, \ldots, n_r \geq 0, n_{r+1} > 0} M_{(n_1, \ldots, n_r-1, n_r+n_{r+1})}.$$

If we put $\varphi(n_1, \ldots, n_r) = (n_1, \ldots, n_r, 0)$, then $S/I \cong R^\varphi$ and $N/L_1 \cong M^\varphi$. Therefore

$$[H_{bS+S_+}^p (N/L_1)]_{(n_1, \ldots, n_{r+1})} = \begin{cases} [H_{bR+R_+}^p (M)]_{(n_1, \ldots, n_r)}, & \text{if } n_{r+1} = 0; \\ 0, & \text{otherwise} \end{cases}$$

for all p. Similarly we put

$$L_2 = \bigoplus_{n_1, \ldots, n_r-1, n_{r+1} \geq 0, n_r > 0} M_{(n_1, \ldots, n_r-1, n_r+n_{r+1})}.$$

Then

$$[H_{bS+S_+}^p (N/L_2)]_{(n_1, \ldots, n_{r+1})} = \begin{cases} [H_{bR+R_+}^p (M)]_{(n_1, \ldots, n_r-1, n_{r+1})}, & \text{if } n_r = 0; \\ 0, & \text{otherwise} \end{cases}$$

for all p.

There exist two long exact sequences of local cohomology modules

$$\cdots \to H_{bS+S_+}^{p-1} (N/L_i) \to H_{bS+S_+}^p (L_i) \to H_{bS+S_+}^p (N) \to H_{bS+S_+}^p (N/L_i) \to \cdots$$

for $i = 1$ and 2. On the other hand, $L_1 \cong L_2(0, \ldots, 0, 1, -1)$.

Assume that (4.2.1) holds. If $p > p_0 + 1$, then

$$[H_{bS+S_+}^p (N)]_{(n_1, \ldots, n_{r+1})} \cong [H_{bS+S_+}^p (L_1)]_{(n_1, \ldots, n_{r+1})} \cong [H_{bS+S_+}^p (L_2)]_{(n_1, \ldots, n_{r-1}, n_r+1, n_{r+1}-1)} \cong [H_{bS+S_+}^p (N)]_{(n_1, \ldots, n_{r-1}, n_r+1, n_{r+1}-1)} \cong \cdots = 0.$$

Here we used Proposition (4.1).
Next we assume that (12.2) holds for all \(p \). Unless \(n_1, \ldots, n_r < 0 \), then
\[
[H_{bS+S_+}^p(N)](n_1, \ldots, n_{r+1}) \cong [H_{bS+S_+}^p(L_1)](n_1, \ldots, n_{r+1})
\cong [H_{bS+S_+}^p(L_2)](n_1, \ldots, n_{r-1}, n_r + 1, n_{r+1}-1)
\cong [H_{bS+S_+}^p(N)](n_1, \ldots, n_{r-1}, n_r + 1, n_{r+1}-1)
\cong \cdots = 0.
\]

We can also show that \([H_{bS+S_+}^p(L)](n_1, \ldots, n_{r+1}) = 0\) if \(n_{r+1} \geq 0 \). In addition, we also assume that (12.3) holds for all \(p < p_0 \). If \(p < p_0 + 1, n_1 + \cdots + n_{r+1} \leq n_0, \) and \(n_1, \ldots, n_{r-1} < 0 \), then
\[
[H_{bS+S_+}^p(N)](n_1, \ldots, n_{r+1}) \cong [H_{bS+S_+}^p(L_1)](n_1, \ldots, n_{r+1})
\cong [H_{bS+S_+}^p(L_2)](n_1, \ldots, n_{r-1}, n_r + 1, n_{r+1}-1)
\subseteq [H_{bS+S_+}^p(N)](n_1, \ldots, n_{r-1}, n_r + 1, n_{r+1}-1)
\cong \cdots = 0.
\]

The proof is completed. \(\Box \)

Let \(b_1, \ldots, b_r \) be ideals in \(A \). The multigraded Rees algebra of \(A \) (for short, the multi-Rees algebra) with respect to them is defined to be
\[
R(b_1, \ldots, b_r) = A[b_1T_1, \ldots, b_rT_r],
\]
where \(T_1, \ldots, T_r \) are indeterminates. If \(b_1, \ldots, b_r \) are of positive height, then \(\dim R(b_1, \ldots, b_r) = \dim A + r \). See Proposition 1.17 of [15]. For an \(A \)-module \(M \), let \(R_M(b_1, \ldots, b_r) \) denote the \(R(b_1, \ldots, b_r) \)-module
\[
\bigoplus_{n_1, \ldots, n_r \geq 0} b_1^{n_1} \cdots b_r^{n_r} MT_1^{n_1} \cdots T_r^{n_r}.
\]

Recently Hyry gives the following theorem.

Theorem 4.3 (10 Corollary 2.10). Let \(b_1, \ldots, b_r \) be ideals in \(A \) of positive height. If the multi-Rees algebra \(R(b_1, \ldots, b_r) \) is Cohen-Macaulay, then the ordinary Rees algebra \(R(b_1 \cdot b_r) \) is also Cohen-Macaulay.

We start to prove Theorem 4.1.

Theorem 4.4. Let \(M \) be a finitely generated \(A \)-module and \(x_1, \ldots, x_d \) elements in \(A \). We fix integers \(t \leq s + 1 < d, \alpha_1, \ldots, \alpha_s > 0, \) and \(\alpha_{s+1} \geq d - s - 1 \). Let \(q_i = (x_i, \ldots, x_d) \) for all \(t \leq i \leq s + 1 \). We put
\[
S = A[q_1T_{t,1}, \ldots, q_{i}T_{t,\alpha_i}, q_{i+1}T_{t+1,1}, \ldots, q_{s}T_{s,\alpha_s}, q_{s+1}T_{s+1,1}, \ldots, q_{s+1}T_{s+1,\alpha_{s+1}}]
\]
and \(N \) the \(S \)-module \(R_M(q_1, \ldots, q_{s+1}) \). If the sequence \(x_1, \ldots, x_d \) satisfies the following six conditions:

1. the sequence \(x_1, \ldots, x_d \) is a \(d \)-sequence on \(M/(x_\lambda^n | \lambda \in \Lambda)M \) for all \(t \leq i \leq s + 1, n_t, \ldots, n_{i-1} > 0, \) and \(\Lambda \subseteq \{t, \ldots, i-1\} \);
2. the sequence \(x_1, \ldots, x_{d-1} \) is a \(d \)-sequence on \(M/(\{x_\lambda | \lambda \in \Lambda, x_d\})M \) for all \(t < i \leq s + 1, n_t, \ldots, n_{i-1} > 0, \) and \(\Lambda \subseteq \{t, \ldots, i-1\} \);
3. the sequence \(x_{i+1}, \ldots, x_d \) is a u.d.\(d \)-sequence on \(M/(x_\lambda^n | \lambda \in \Lambda)M \) for all \(n_t, \ldots, n_s > 0 \) and \(\Lambda \subseteq \{t, \ldots, s\} \);
(4) the equality
\[
\{(x_\lambda^n \mid \lambda \in \Lambda), x_k, \ldots, x_{l-1}\} M : x_l \cap [(x_\lambda^n \mid \lambda \in \Lambda) M + q_i^n \cdots q_{s+1}^n M] = (x_\lambda^n \mid \lambda \in \Lambda) M + (x_k, \ldots, x_{l-1}) q_i^n \cdots q_{s+1}^n M
\]
holds for any integers \(t \leq i \leq k \leq s + 1, k \leq l \leq d, n_i, \ldots, n_{i-1}, n_k > 0, n_i, \ldots, n_{k-1}, n_{k+1}, \ldots, n_{s+1} \geq 0, \) and \(\Lambda \subseteq \{t, \ldots, i-1\} \);

(5) the equality
\[
[(x_\lambda^n \mid \lambda \in \Lambda) M + q_i^n \cdots q_{s+1}^n M] : x_{i-1} = [(x_\lambda^n \mid \lambda \in \Lambda) M + q_i^n \cdots q_{s+1}^n M] : q_{i-1}
\]
holds for any \(t < i \leq s + 1, n_i, \ldots, n_{i-1} > 0, n_i, \ldots, n_{s+1} \geq 0, \) and \(\Lambda \subseteq \{t, \ldots, i-2\} \);

(6) \(0 : M x_d \subseteq 0 : M x_t \),

then
\[
H^p_{q_1 S + S_+} (N) = 0 : x_d,
\]
(4.4.2)
\[
H^p_{q_1 S + S_+} (N) = 0 \text{ for } p \neq 0, d-t+1 + \alpha_t + \cdots + \alpha_{s+1},
\]
and
(4.4.3)
\[
[H^d-{t+1+\alpha_t+\cdots+\alpha_{s+1}}_{q_1 S + S_+} (N)](n_1, \ldots, n_{s+1}, \alpha_{s+1}) = 0,
\]
unless \(n_t, \ldots, n_{s+1}, \alpha_{s+1} < 0 \).

Proof. We show that (4.4.1), (4.4.3) by descending induction on \(t \). First we note that \(d-s \geq 2 \) because of the assumption. Furthermore \(0 : M x_t \subseteq \cdots \subseteq 0 : M x_d \) because \(x_t, \ldots, x_d \) is a \(d \)-sequence on \(M \). Therefore (1) and (6) say that \(0 : M x_t = \cdots = 0 : M x_d \). Without loss of generality, we may assume that \(0 : M x_d = 0 \). Indeed, assumptions (1)–(6) hold on \(\overline{M} = M/0 : M x_d \). For example,
\[
[(x_\lambda^n \mid \lambda \in \Lambda), x_k, \ldots, x_{l-1}] M + 0 : x_l : x_l = (x_\lambda^n \mid \lambda \in \Lambda), x_k, \ldots, x_{l-1}) M : x_l^2 = (x_\lambda^n \mid \lambda \in \Lambda), x_k, \ldots, x_{l-1}) M : x_l
\]
because \(0 : M x_t \subseteq 0 : M x_t \). Hence
\[
(x_\lambda^n \mid \lambda \in \Lambda), x_k, \ldots, x_{l-1}) M : x_l \cap [(x_\lambda^n \mid \lambda \in \Lambda) M + q_i^n \cdots q_{s+1}^n M + 0 : x_l]
\]
\[
= (x_\lambda^n \mid \lambda \in \Lambda), x_k, \ldots, x_{l-1}) M : x_l \cap [(x_\lambda^n \mid \lambda \in \Lambda) M + q_i^n \cdots q_{s+1}^n M + 0 : x_l]
\]
\[
= (x_\lambda^n \mid \lambda \in \Lambda) M + (x_k, \ldots, x_{l-1}) q_i^n \cdots q_{s+1}^n M + 0 : x_l.
\]
Thus (4) holds on \(\overline{M} \). Similarly we can show that (1)–(3) and (5) hold on \(\overline{M} \). Of course \(0 : \overline{M} x_t = 0 : \overline{M} x_d = 0 \). On the other hand, if \(\overline{N} \) denotes the \(S \)-module \(R_{\overline{M}}(q_1, \ldots, q_{s+1}) \), then there exists an exact sequence of \(S \)-modules
\[
0 \rightarrow 0 : x_t \rightarrow N \rightarrow \overline{N} \rightarrow 0.
\]
Since \(0 : M x_t \) is annihilated by \(q_1 S + S_+ \),
\[
0 \rightarrow 0 : x_t \rightarrow H^0_{q_1 S + S_+} (N) \rightarrow H^0_{q_1 S + S_+} (\overline{N}) \rightarrow 0
\]
is exact and
\[H^p_{q,t+S+S_+}(N) \cong H^p_{q,t+S_+}(N) \quad \text{for all } p > 0. \]
Thus if the assertion holds for \(M \), then the one holds for \(M \).

From now on we assume that \(0 :_M x_t = \cdots = 0 :_M x_d = 0 \). Because of Proposition 4.2, we may assume that \(\alpha_t = \cdots = \alpha_s = 1 \) and \(\alpha_{s+1} = d - s - 1 \). For the simplicity, we write \(T_t = T_{t+1}, \ldots, T_{s+1} = T_{s+1,1}, T_{s+2} = T_{s+1,2}, \ldots, T_{d-1} = T_{s+1,d-s-1} \).

Assume that \(t = s + 1 \) and put \(R = \text{Ann}(T_{s+1}T_{s+1}) \). Then we know that
\[[H^p_{q+t+1,R+R_+}(R_M(q_{s+1}))]_{n+1} = 0 \quad \text{unless } 2 - p \leq n \leq -1 \]
for all \(p < d - s + 1 \),
\[[H^d_{d-s+1,R+R_+}(R_M(q_{s+1}))]_{n} = 0 \quad \text{unless } n < 0, \]
and
\[H^p_{q+t+1,R+R_+}(R_M(q_{s+1})) = 0 \quad \text{for all } p > d - s + 1. \]

See [12, Theorem 4.1]. By using Proposition 4.2 repeatedly, we find that
\[H^p_{q+t+1,S+S_+}(N) = 0 \quad \text{for } p \neq 2d - 2s - 1 \]
and
\[[H^{2d-2s-1}_{q+t+1,S_+}(N)]_{n} = 0 \quad \text{unless } n_{s+1}, \ldots, n_{d-1} < 0. \]
Thus we obtain [14.1]–[14.3].

Next we assume that \(t < s + 1 \). Then \(x_{m}M : x_{t+1} = x_{t}M : x_{d} \) for any \(m > 0 \). Indeed, if \(a \in x_{m}M : x_{d} \) and we put \(x_{ad} = x_{b} \), then \(b \in x_{d}M : x_{m} \subseteq x_{d}M : x_{t+1} \) because of (2). Let \(x_{t+1}b = x_{ab} \). Then \(x_{t+1}x_{ad} = x_{t+1}x_{b} = x_{t}x_{t+1}c \). Therefore \(x_{t+1}a - x_{p}c \in 0 :_M x_{d} = 0 \) and hence \(a \in x_{p}M : x_{t+1} \). Thus the sequence \(x_{t+1}, \ldots, x_{d} \) satisfies (1)–(6) on \(M \) and on \(M/x_{t}M \) for any \(m > 0 \).

Let \(R = \text{Ann}(T_{t+1}T_{t+1}, \ldots, q_{s+1}T_{s+1}, \ldots, q_{s+1}T_{d-1}) \) and
\[Y = \bigoplus_{n_{t+1}, \ldots, n_{d-1} \geq 0} [q_{n_{t+1}}^{n_{t+1}} \cdots q_{n_{d-1}}^{n_{d-1}} M : q_{t}]T_{t+1}^{n_{t+1}} \cdots T_{d-1}^{n_{d-1}}. \]
Then assumption (5) gives an exact sequence of \(R \)-modules
\[0 \to Y \xrightarrow{x_{t}} R_{M}(q_{t+1}, \ldots, q_{s+1}) \to R_{M/x_{t}M}(q_{t+1}, \ldots, q_{s+1}) \to 0 \]
and hence \(Y \) is finitely generated over \(R \). The induction hypothesis says that
\[H^p_{q+t,R+R_+}(R_M(q_{t+1}, \ldots, q_{s+1})) = 0 \quad \text{for } p \neq 2d - 2t - 1, \]
\[[H^{2d-2t-1}_{q+t,R+R_+}(R_M(q_{t+1}, \ldots, q_{s+1}))]_{n_{t+1}, \ldots, n_{d-1}} = 0 \]
unless \(n_{t+1}, \ldots, n_{d-1} < 0 \),
\[H^p_{q+t+1,R+R_+}(R_{M/x_{t}M}(q_{t+1}, \ldots, q_{s+1})) = 0 \quad \text{for } p \neq 0, 2d - 2t - 1, \]
and
\[[H^{2d-2t-1}_{q+t+1,R+R_+}(R_{M/x_{t}M}(q_{t+1}, \ldots, q_{s+1}))]_{n_{t+1}, \ldots, n_{d-1}} = 0 \]
unless \(n_{t+1}, \ldots, n_{d-1} < 0 \). The spectral sequence
\[E^2_{2} = H^p_{x_{t}}H^q_{q+t,R+R_+}(-) \Rightarrow H^{p+q}_{q,R+R_+}(-) \]
gives a short exact sequence

$$0 \to H^1_{x_t}H^{p-1}_{q_t+1,R_t+R_+}(-) \to H^p_{q_t,R_t+R_+}(-) \to H^0_{x_t}H^p_{q_t+1,R_t+R_+}(-) \to 0.$$

By using it, we obtain

$$H^p_{q_t,R_t+R_+}(R_M(q_{t+1},\ldots,q_{s+1})) = 0 \quad \text{for } p \neq 2d - 2t - 1, 2d - 2t,$$

$$[H^{2d-2t}_{q_t,R_t+R_+}(R_M(q_{t+1},\ldots,q_{s+1}))](n_{t+1},\ldots,n_{d-1}) = 0$$

unless $n_{t+1}, \ldots, n_{d-1} < 0$,

$$H^p_{q_t,R_t+R_+}(R_{M/x^p_t M}(q_{t+1},\ldots,q_{s+1})) = 0 \quad \text{for } p \neq 0, 2d - 2t - 1,$$

and

$$[H^{2d-2t}_{q_t,R_t+R_+}(R_{M/x^p_t M}(q_{t+1},\ldots,q_{s+1}))](n_{t+1},\ldots,n_{d-1}) = 0$$

unless $n_{t+1}, \ldots, n_{d-1} < 0$. Therefore

$$H^p_{q_t,R_t+R_+}(Y) = 0 \quad \text{for } p \neq 1, 2d - 2t - 1, 2d - 2t,$$

$$[H^{2d-2t}_{q_t,R_t+R_+}(Y)](n_{t+1},\ldots,n_{d-1}) = 0 \quad \text{unless } n_{t+1}, \ldots, n_{d-1} < 0,$$

and

$$0 \to H^{2d-2t-1}_{q_t,R_t+R_+}(Y) \to H^{2d-2t-1}_{q_t,R_t+R_+}(R_M(q_{t+1},\ldots,q_{s+1}))$$

is exact. We show that $H^{2d-2t-1}_{q_t,R_t+R_+}(Y) = 0$. Let $E = H^{2d-2t-1}_{q_t,R_t+R_+}(R_M(q_{t+1},\ldots,q_{s+1}))$.

Because of (5),

$$q_1 Y \subseteq R_M(q_{t+1},\ldots,q_{s+1}) \subseteq Y.$$

Therefore

$$H^p_{q_t,R_t+R_+}(Y/R_M(q_{t+1},\ldots,q_{s+1})) \cong H^p_{R_+}(Y/R_M(q_{t+1},\ldots,q_{s+1})).$$

Let

$$f_{2t+2} = x_{t+1}T_{t+1},$$

$$f_{2t+3} = x_{t+2}T_{t+1},$$

$$f_{2t+4} = x_{t+3}T_{t+1} + x_{t+2}T_{t+2},$$

$$\vdots$$

$$f_{d+t+1} = x_dT_{t+1} + x_{d-1}T_{t+2} + \cdots,$$

$$f_{d+t+2} = x_dT_{t+1} + \cdots,$$

$$\vdots$$

$$f_{2d-2} = x_dT_{d-2} + x_{d-1}T_{d-1},$$

$$f_{2d-1} = x_dT_{d-1}.$$

Then $\sqrt{R_+} = \sqrt{(f_{2t+2},\ldots,f_{2d-1})R}$. The proof is quite similar to [11, Lemma 3.2]. We omit it. Therefore

$$H^p_{q_t,R_t+R_+}(Y/R_M(q_{t+1},\ldots,q_{s+1})) = 0 \quad \text{for } p > 2d - 2t - 2$$

and hence

$$H^{2d-2t-2}_{q_t,R_t+R_+}(Y/R_M(q_{t+1},\ldots,q_{s+1})) \to E \to H^{2d-2t-1}_{q_t,R_t+R_+}(Y) \to 0$$

is exact. Thus

$$(4.4.4) \quad H^{2d-2t-1}_{q_t,R_t+R_+}(Y/R_M(q_{t+1},\ldots,q_{s+1})) \to E \xrightarrow{\delta} E$$
is exact. Since the first term of (4.4.4) is annihilated by \(x_t \), we obtain 0;\(E x_t^m = 0;E x_t \). Therefore \(x_t E = 0 \) and hence \(H^{2d-2t-1}_R(x_t^m) = 0 \) because \(E = \bigcup_{m > 0} 0;E x_t^m \).

Since \(R = S/q_T S, Y \) is also an \(S \)-module and

\[
H^p_{q_t S + S_+}(Y) = 0 \quad \text{for} \quad p \neq 1, 2d - 2t, \quad [H^{2d-2t}_{q_t S + S_+}(Y)](n_t, \ldots, n_{d-1}) = 0 \quad \text{unless} \quad n_t = 0, n_{t-1}, \ldots, n_{d-1} < 0.
\]

Let \(S' = A[q_{t+1} T_t, q_{t+1} T_{t+1}, \ldots, q_s T_s, q_{s+1} T_{s+1}, \ldots, q_{s+1} T_{s+1}] \). Then the induction hypothesis says that

\[
H^p_{q_{t+1} S' + S'_+}(R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1})) = 0 \quad \text{for} \quad p \neq 0, 2d - 2t
\]

and

\[
[H^{2d-2t}_{q_{t+1} S' + S'_+}(R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1}))](n_t, \ldots, n_{d-1}) = 0
\]

unless \(n_t, \ldots, n_{d-1} < 0 \). Since \(S' \) is an \(A \)-subalgebra of \(S \), we can regard the \(S \)-module \(R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1}) \) as an \(S' \)-module and there exists an \(S' \)-isomorphism

\[
R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1}) \cong R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1}).
\]

Since \((x_t, x_t T_t) R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1}) = 0 \),

\[
H^p_{q_{t+1} S' + S'_+}(R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1})) = 0
\]

for \(p \neq 0, 2d - 2t \) and

\[
[H^{2d-2t}_{q_{t+1} S' + S'_+}(R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1}))](n_t, \ldots, n_{d-1}) = 0 \quad \text{unless} \quad n_t, \ldots, n_{d-1} < 0.
\]

Let \(X \) be the kernel of the natural epimorphism \(N \to R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1}) \). Then there exists an exact sequence of \(S \)-modules

\[
0 \to X \to N \to R_{M/x_t M}(q_{t+1}, q_{t+1}, \ldots, q_{s+1}) \to 0.
\]

Since

\[
x_t M \cap q_{t+1}^{n_t+1} \cdots q_{s+1}^{n_s+1} M = x_t q_{t+1}^{n_t+1} \cdots q_{s+1}^{n_s+1} M
\]

if \(n_t > 0 \),

\[
\bigoplus_{n_t > 0} X(x_t, \ldots, x_n) = x_t T_t N
\]

and there exists an exact sequence

\[
0 \to N(-1, 0, \ldots, 0) \xrightarrow{x_t T_t} X \xrightarrow{x_t^{-1}} Y \to 0.
\]

Because of (4.4.3) and (4.4.4),

\[
0 \to H^p_{q_t S + S_+}(N)(-1, 0, \ldots, 0) \xrightarrow{x_t T_t} H^p_{q_t S + S_+}(N)
\]

is exact if \(3 \leq p < 2d - 2t + 1 \) or \(p > 2d - 2t + 1 \). Since \(H^p_{q_t S + S_+}(N) \) is annihilated by some power of \(x_t T_t \) elementwise,

\[
H^p_{q_t S + S_+}(N) = 0 \quad \text{if} \quad 3 \leq p < 2d - 2t + 1 \text{ or } p > 2d - 2t + 1.
\]

Furthermore

\[
H^{2d-2t}_{q_t S + S_+}(Y) \to H^{2d-2t+1}_{q_t S + S_+}(N)(-1, 0, \ldots, 0) \to H^{2d-2t+1}_{q_t S + S_+}(X) \to 0
\]
and
\[H_{q_{s}S + S_{s}}^{2d-2t}(R_{M, x_{1}, M}(q_{1}, \ldots, q_{s+1})) \to H_{q_{s}S + S_{s}}^{2d-2t+1}(X) \to H_{q_{s}S + S_{s}}^{2d-2t+1}(N) \to 0 \]
are exact. Unless \(n_{t}, \ldots, n_{d-1} < 0 \), then we obtain
\[[H_{q_{s}S + S_{s}}^{2d-2t+1}(N)](n_{t}, \ldots, n_{d-1}) \cong [H_{q_{s}S + S_{s}}^{2d-2t+1}(X)](n_{t}, \ldots, n_{d-1}) \]
\[\cong [H_{q_{s}S + S_{s}}^{2d-2t+1}(N)](n_{t}, \ldots, n_{d-1}) \cong \cdots = 0. \]
Thus (4.4.2) is proved.

Finally we show that \(x_{s}T_{s}, x_{s+1}T_{s+1}, x_{s+2} \) is a regular sequence on \(N \). Since \(x_{s} \) is regular on \(M \), \(x_{s}T_{s} \) is regular on \(N \).

Let \(aT_{s}^{n_{s}} \cdots T_{d-1}^{n_{d-1}} \in x_{s}T_{s}N:x_{s+1}T_{s+1} \). If \(n_{s} = 0 \), then \(x_{s+1}a = 0 \) and hence \(a = 0 \). If \(n_{s} > 0 \), then
\[a \in x_{s}M:x_{s+1} \cap q_{s+1}^{n_{s+1}} \cdots q_{s+1}^{n_{s+1} + \cdots + n_{d-1}}M = x_{s}q_{s+1}^{n_{s+1}} \cdots q_{s+1}^{n_{s+1} + \cdots + n_{d-1}}M. \]
Here we used (4). Hence \(aT_{s}^{n_{s}} \cdots T_{d-1}^{n_{d-1}} \in x_{s}T_{s}N \).

Let \(aT_{s}^{n_{s}} \cdots T_{d-1}^{n_{d-1}} \in (x_{s}T_{s}, x_{s+1}T_{s+1})N:x_{s+2} \). If \(n_{s} = n_{s+1} = 0 \), then \(x_{s+2}a = 0 \) and hence \(a = 0 \). If \(n_{s} > 0 \) and \(n_{s+1} = 0 \), then \(a \in x_{s}M:x_{s+2} \). Because of (3), we have \(x_{s}M:x_{s+1} = x_{s}M:x_{s+2} \). Hence
\[a \in x_{s}M:x_{s+1} \cap q_{s+1}^{n_{s+1}} \cdots q_{s+1}^{n_{s+1} + \cdots + n_{d-1}}M = x_{s}q_{s+1}^{n_{s+1}} \cdots q_{s+1}^{n_{s+1} + \cdots + n_{d-1}}M, \]
that is, \(aT_{s}^{n_{s}} \cdots T_{d-1}^{n_{d-1}} \in x_{s}T_{s}N \). If \(n_{s} = 0 \) and \(n_{s+1} > 0 \), then
\[a \in x_{s+1}M:x_{s+2} \cap q_{s+1}^{n_{s+1}} \cdots q_{s+1}^{n_{s+1} + \cdots + n_{d-1}}M = x_{s+1}q_{s+1}^{n_{s+1}} \cdots q_{s+1}^{n_{s+1} + \cdots + n_{d-1}}M \]
and hence \(aT_{s}^{n_{s}} \cdots T_{d-1}^{n_{d-1}} \in x_{s+1}T_{s+1}N \). If \(n_{s}, n_{s+1} > 0 \), then
\[a \in (x_{s}, x_{s+1})M:x_{s+2} \cap q_{s}^{n_{s}} \cdots q_{s}^{n_{s} + \cdots + n_{d-1}}M \]
\[= (x_{s}, x_{s+1})q_{s}^{n_{s}} \cdots q_{s}^{n_{s} + \cdots + n_{d-1}}M \]
\[= x_{s}q_{s}^{n_{s}} \cdots q_{s}^{n_{s} + \cdots + n_{d-1}}M + x_{s+1}q_{s}^{n_{s}} \cdots q_{s}^{n_{s} + \cdots + n_{d-1}}M. \]
Therefore \(aT_{s}^{n_{s}} \cdots T_{d-1}^{n_{d-1}} \in (x_{s}T_{s}, x_{s+1}T_{s+1})N \).
Thus we obtain
\[H_{q_{s}S + S_{s}}^{p}(N) = 0 \quad \text{for } p < 3. \]
The proof is completed. \(\square \)

Corollary 4.5. Let \(A \) be a Noetherian local ring of dimension \(d \geq 2 \) and \(x_1, \ldots, x_d \) a \(p \)-standard system of parameters of type \(s \) for \(A \). We put \(q_i = (x_i, \ldots, x_d) \) for all \(1 \leq i \leq s + 1 \). If \(s < d - 1 \) and \((0): x_d = 0 \), then the Rees algebra \(R(q_1 \cdots q_d S_{d-s}^{d-s-1}) \) is a Cohen-Macaulay ring. If, in addition, \(A/q_i \) is Cohen-Macaulay for some \(1 < t \leq s + 1 \), then \(R(q_1 \cdots q_d S_{d-s}^{d-s-1}) \) is a Cohen-Macaulay ring.

Proof. In this case Propositions 3.6, 3.7, Theorem 3.6, and Corollary 3.7 say that \(x_1, \ldots, x_d \) satisfies assumptions (1)–(5) of Theorem 4.4. Moreover \((0): x_1 \geq \) \((0): x_1 = 0 \). Thus we find that \(A[q_1T_1, \ldots, q_sT_s, q_{s+1}T_{s+1}, \ldots, q_{s+1}T_{s+1}] \) is Cohen-Macaulay by using Theorem 4.1. By Hyr’s theorem says that \(R(q_1 \cdots q_d S_{d-s}^{d-s-1}) \) is Cohen-Macaulay.
Assume that A/\mathfrak{q} is Cohen-Macaulay. That is, x_1, \ldots, x_{t-1} is a regular sequence on A/\mathfrak{q}. We show that

$$(x_1, \ldots, x_i) : x_d = (x_1, \ldots, x_i) \text{ for } 1 \leq i \leq t - 1$$

by induction on i. If $i = 0$, then there exists nothing to prove. Assume that $i > 0$ and let $a \in (x_1, \ldots, x_i) : x_d$. If we put $x_da = b + x_ic$ with $b \in (x_1, \ldots, x_{i-1})$, then

$$c \in (x_1, \ldots, x_{i-1}, x_d) : x_i$$

$$(x_1, \ldots, x_{i-1}, x_d).$$

Here we used Corollary 3.8. Let $c = b' + x_da'$ with $b' \in (x_1, \ldots, x_{i-1})$. Then

$$a - x_ia' \in (x_1, \ldots, x_{i-1}) : x_d = (x_1, \ldots, x_{i-1})$$

because of the induction hypothesis. Therefore $a \in (x_1, \ldots, x_i)$. Thus x_1, \ldots, x_d satisfies the assumptions of Theorem 4.4 on $\tilde{A} = A/(x_1, \ldots, x_{t-1})$. Therefore

$$\tilde{A}[q_1\tilde{A}t_1, \ldots, q_s\tilde{A}t_s, q_{s+1}\tilde{A}t_{s+1}, \ldots, q_{s+1}\tilde{A}t_{d-1}]$$

is a Cohen-Macaulay ring and hence $R(q_1 \cdots q_s q_{d-s+1}^{-1}A)$ is also. Corollary 3.8 also says that x_1, \ldots, x_{t-1} is a regular sequence on A and on $A/(q_1 \cdots q_s q_{d-s+1}^{-1})^n$ for all $n > 0$. Taking Koszul cohomology of a short exact sequence

$$0 \to R(q_1 \cdots q_s q_{d-s+1}^{-1}) \to A[T] \to \bigoplus_{n>0} (A/(q_1 \cdots q_s q_{d-s+1}^{-1})^n)T^n \to 0$$

with respect to x_1, \ldots, x_{t-1}, we obtain that

$$H^p(x_1, \ldots, x_{t-1}; R(q_1 \cdots q_s q_{d-s+1}^{-1})) = 0 \text{ for } p < t - 1$$

and

$$H^{t-1}(x_1, \ldots, x_{t-1}; R(q_1 \cdots q_s q_{d-s+1}^{-1})) \cong R(q_1 \cdots q_s q_{d-s+1}^{-1}A).$$

That is, x_1, \ldots, x_{t-1} is a regular sequence on $R(q_1 \cdots q_s q_{d-s+1}^{-1})$ and

$$R(q_1 \cdots q_s q_{d-s+1}^{-1}A) \cong R(q_1 \cdots q_s q_{d-s+1}^{-1})/(x_1, \ldots, x_{t-1})R(q_1 \cdots q_s q_{d-s+1}^{-1}).$$

Therefore $R(q_1 \cdots q_s q_{d-s+1}^{-1})$ is a Cohen-Macaulay ring.

Proof of Theorem 1.1 Let A be a Noetherian local ring of dimension $d > 0$. First we prove that (B) implies (A). Assume that A satisfies (B). If $d = 1$, then A is Cohen-Macaulay because A has no embedded prime. Let a be a system of parameters for A. Then $R(aA)$ is a polynomial ring over A and hence Cohen-Macaulay.

Assume that $d \geq 2$. Since A is unmixed, $\dim A/p = d$ for any associated prime p of A. Thus $s = \dim A/a(A) < d - 1$ because of Corollary 2.3. Theorem 2.5 assures us that there exists a p-standard system of parameters x_1, \ldots, x_d of type s for A. Since A is unmixed, x_1, \ldots, x_d are non-zero divisors on A. Therefore Corollary 4.5 gives an arithmetic Macaulayfication of A.

Next we show that (A) implies (B). Let b be an ideal in A of positive height such that $R = A[bT]$ is a Cohen-Macaulay ring. Then A is a homomorphic image of a Cohen-Macaulay local ring $R_{mR + R_s}$ and hence all the formal fibers of A are Cohen-Macaulay. Next we show that A is unmixed. By passing through the completion, we may assume that A is complete. Since b is of positive height, $\dim R = d + 1$. See [32, Corollary 1.6]. Let p_1, \ldots, p_s be the associated primes of A. Then

$$p_i^* = p_iA[T] \cap R \text{ where } i = 1, \ldots, s$$
are the associated primes of R. Since R is a Cohen-Macaulay ring of dimension $d + 1$,
$\dim R/p_i^c = d + 1$ and hence $\dim A/p_i = d$; see [22] Corollary 1.6] again, for all i.

To close this section, we give an example.

Example 4.6. Let k be a field, B an affine semigroup ring

$$k[a, b, c, d, e^2, e^3, ade, bde, cde, d^2e]$$

and n the homogeneous maximal ideal of B. Then $A = B_n$ is a Noetherian local
ring of dimension 5. The sequence $x_1 = a^4, x_2 = b^4, x_3 = c^4, x_4 = d^4, x_5 = e^4$ is a
p-standard system of parameter of type 3 for A. See [17] Appendix B].

Let $q_i = (x_1, \ldots, x_d)$ for $i = 1, \ldots, 4$. Then the proof of Corollary 4.5 says that the
multi-Rees algebra $A[q_1T_1, \ldots, q_4T_4]$ is a Cohen-Macaulay ring of dimension 9.
However, we can verify that it is a Cohen-Macaulay ring by using a computer [6].

Indeed the sequence $x_1, x_1T_1 + x_2, x_2T_1 + x_3, x_2T_2 + x_3T_1 + x_4, x_3T_2 + x_4T_1 + x_5,
 x_3T_3 + x_4T_2 + x_5T_1, x_4T_3 + x_5T_2, x_4T_4 + x_5T_3, x_5T_4$ is a regular sequence on
$A[q_1T_1, \ldots, q_4T_4]$ of length 9.

5. The proof of Corollary 1.2

Before proving Corollary 1.2 we state the definition of the codimension function.

Definition 5.1. Let B be a Noetherian ring. An integer-valued function t_B defined
on Spec B is said to be a codimension function of B if

$$\text{ht } p_1/p_2 = t_B(p_1) - t_B(p_2)$$ whenever $p_1 \supseteq p_2$.

A codimension function of B is not unique even if it exists. In fact, if $t(p)$ is a
codimension function, then $t(p) + c$ is also a codimension function for any constant c.
However, the codimension function is unique up to constant if Spec B is connected.

Proposition 5.2. (1) A catenary local ring has a codimension function.

(2) A catenary integral domain has a codimension function.

(3) A Cohen-Macaulay ring has a codimension function even if it is neither a
local ring nor an integral domain.

(4) If a Noetherian ring has a codimension function, then its homomorphic image
does also.

(5) If a Noetherian ring has a codimension function, then its localization does
also.

(6) A Noetherian ring possessing a dualizing complex has a codimension function.

Proof. Let B be a Noetherian ring.

(1) Let $t(p) = - \dim B/p$. If B is a catenary local ring, then $t(p)$ is a codimension
function of B.

(2) Let $t(p) = \dim B_p$. If B is a catenary integral domain, then $t(p)$ is a codimension
function of B.

(3) Let $t(p) = \dim B_p$. Then $t(p)$ is the codimension function of B. See the proof
of [20] Theorem 17.4(ii)].

(4) and (5) Obvious.

(6) See [14], Chapter 5, §7].

A Noetherian ring is catenary if it has a codimension function. But the converse
is not necessarily true. Moreover the universally catenarity is independent of the
existence of a codimension function.
Example 5.3. (1) Ogoma [24, §5 I] gave a Noetherian, universally catenary ring with no codimension function.

(2) Nagata [21, Example 2] gave a two-dimensional local integral domain which is not quasi-unmixed. It has a codimension function but is not universally catenary.

If a Noetherian ring B is universally catenary and has a codimension function, then the polynomial ring over B does also.

Theorem 5.4. Let B be a Noetherian, universally catenary ring and C an essentially of finite type B-algebra. If B has a codimension function, then C does also.

Proof. We may assume that C is a polynomial ring over B. Let t_B be a codimension function. We put

$$ t_C(q) = t_B(p) + \text{ht } q/pC $$

for each prime ideal q in C. Then t_C is a codimension function of C.

The following is the key lemma for the proof of Corollary 1.2.

Lemma 5.5. Let B be a Noetherian, universally catenary ring which has a codimension function. Then it is a homomorphic image of a finite type B-algebra C such that the codimension function of C is a constant on the associated primes of C. If, in addition, B is a local ring, then there exists a maximal ideal n of C such that B is a homomorphic image of C_n.

Proof. Let t_B be a codimension function of B and

$$(0) = q_1 \cap \cdots \cap q_s$$

the irredundant primary decomposition of (0) in B. We may assume that

$$\sup\{t_B(\sqrt{q_i}) \mid i = 1, \ldots, s\} = 0.$$

We put $n = -\inf\{t_B(\sqrt{q_i}) \mid i = 1, \ldots, s\}$ and $n_i = -t_B(\sqrt{q_i})$ for all i. Then

$$C = B[T_1, \ldots, T_n] \amalg \bigcap_{i=1}^{s} (q_i, T_1, \ldots, T_n)B[T_1, \ldots, T_n]$$

has the required property. If B is a local ring with maximal ideal m, then $n = mC + (T_1, \ldots, T_n)C$ has the required property.

Proof of Corollary 1.2. The only if part is obvious. We prove the if part. Let A be a Noetherian, universally catenary local ring with maximal ideal m and assume that all the formal fibers of A are Cohen-Macaulay. If $\dim A = 0$, then A itself is Cohen-Macaulay.

We assume that $\dim A > 0$. By modifying the proof of [29, Theorem 5.7], we find that all the formal fibers of an essentially of finite type A-algebra are Cohen-Macaulay. By using this fact and Lemma 5.5 we may assume that $\dim A/p = \dim A$ for each associated prime p of A. It implies that A is unmixed because A is formally catenary and all the formal fibers of A are Cohen-Macaulay. Theorem 1.1 says that there exists an arithmetic Macaulayfication R of A. Thus A is a homomorphic image of a Cohen-Macaulay local ring $R_{mR + R_n}$.

If A is excellent, then any essentially of finite type A-algebra is also. Therefore we obtain the second assertion.
We should mention that Corollary 1.2 is not true for non-local rings. Indeed, all the formal fibers of all the localization of Ogoma’s example above are Cohen-Macaulay. But it is not a homomorphic image of a Cohen-Macaulay ring because it has no codimension function.

6. Non-local rings

First we prove Theorem 1.3. Let \(B \) be a Noetherian ring with dualizing complex \(D \). Then there exists a codimension function \(t \) of \(B \) such that

\[
H^p(\text{Hom}_B(B/p, D)_p) = 0 \quad \text{if } p \neq t(p)
\]

for each prime ideal \(p \) in \(B \). The following lemma is an analogue of Proposition 2.3 and Corollary 2.4. We can prove them by using the local duality theorem. Here \(\text{ann} M \) denotes the annihilator of a \(B \)-module \(M \).

Lemma 6.1. Let \(M \) be a finitely generated \(B \)-module and \(p \) a prime ideal in \(B \). Assume that \(t(q) = 0 \) for all minimal prime \(q \) of \(M \). Then \(M_p \) is Cohen-Macaulay if and only if \(p \supseteq \prod_{j>0} \text{ann} H^j(\text{Hom}(M, D)) \).

In particular, if \(p \supseteq \prod_{j>0} \text{ann} H^j(\text{Hom}(M, D)) \), then \(t(p) > 0 \). If \(t(q) = 0 \) for all associated prime \(q \) of \(M \), then \(p \supseteq \prod_{j>0} \text{ann} H^j(\text{Hom}(M, D)) \) implies that \(t(p) \geq 2 \).

We start the proof of Theorem 1.3.

Proof of Theorem 1.3. Let \(d = \text{dim} B \) and assume that \(t(q) = 0 \) for all associated primes \(q \) of \(B \). Then \(s_0 = \inf \{t(p) \mid B_p \text{ is not Cohen-Macaulay}\} \geq 2 \). If \(s \) is an integer such that \(d - s_0 \leq s < d - 1 \), then there exist elements \(x_1, \ldots, x_d \) in \(B \) satisfying the following conditions:

1. If \(p \) is a minimal prime of \(B/(x_i, \ldots, x_d)B \), then \(t(p) = d - i + 1 \);
2. \(s_{i+1}, \ldots, x_d \in \prod_{j>0} \text{ann} H^j(D) \);
3. \(x_i \in \prod_{j>d-i} \text{ann} H^j(\text{Hom}(B/(x_{i+1}, \ldots, x_d), D)) \) for \(i \leq s \).

We note that (1) implies (0): \(x_d = 0 \). Let \(q_i = (x_i, \ldots, x_d) \) for \(1 \leq i \leq s + 1 \) and \(R = R(q_1 \cdots q_{s+1}^{d-s-1}) \).

We show that \(R_p \) is Cohen-Macaulay for all prime ideal \(p \) in \(B \). If \(q_1 \cdots q_{s+1}^{d-s-1} \not\subseteq p \), then \(\prod_{j>0} \text{ann} H^j(D) \not\subseteq p \). Therefore \(R_p \) is a polynomial ring over a Cohen-Macaulay ring \(B_p \).

Assume that \(q_1 \cdots q_{s+1}^{d-s-1} \subseteq p \). Then \(x_1, \ldots, x_d \in p \) and \(x_{s+1} \notin p \) for some \(1 \leq t \leq s + 1 \), where we put \(x_0 = 1 \). Taking localization of (1)–(3), we find that

1. \(\dim B_p/(x_t, \ldots, x_d) = \dim B_p - (d - t + 1) \);
2. \(x_{s+1}, \ldots, x_d \in \text{a}(B_p) \);
3. \(x_i \in \text{a}(B_p/(x_{i+1}, \ldots, x_d)) \) for \(t \leq i \leq s + 1 \);
4. \(\text{a}(B_p/(x_t, \ldots, x_d)) = B_p \) if \(t > 1 \).

Hence \(x_1, \ldots, x_d \) is a subsystem of a \(p \)-standard system of parameters for \(B_p \) and \(B_p/(x_t, \ldots, x_d) \) is Cohen-Macaulay if \(t > 1 \). We find that \(R_p = R(q_t \cdots q_{s+1}^{d-s-1}B_p) \) is Cohen-Macaulay by using Corollary 1.4. \(\square \)

Now Corollary 1.4 becomes trivial.

Proof of Corollary 1.4. Let \(B \) be a Noetherian ring with dualizing complex. We may assume that the codimension function of \(B \) is a constant on the associated primes of \(B \) because of [23, Theorem 3.5]. Then \(B \) has an arithmetic Macaulayfication \(R \). Since \(R \) also has a dualizing complex and is Cohen-Macaulay, \(R \) is
a homomorphic image of a finite-dimensional Gorenstein ring. See [25] and [30, Theorem 4.3]. Therefore B is also.

REFERENCES

4. , *A conjecture of Sharp—the case of local rings with dim non-CM ≤ 1 or dim ≤ 5*, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Kinokuniya, 1988, pp. 27–34. MR 90b:13013

Department of Mathematics, Tokyo Metropolitan University, Hachioji-shi Minami-Ohsawa 1-1, Tokyo 192-0397, Japan

E-mail address: kawasaki@comp.metro-u.ac.jp
URL: http://www.comp.metro-u.ac.jp/~kawasaki/