Representation type of Hecke algebras of type

Authors:
Karin Erdmann and Daniel K. Nakano

Journal:
Trans. Amer. Math. Soc. **354** (2002), 275-285

MSC (2000):
Primary 16G60, 20C08

DOI:
https://doi.org/10.1090/S0002-9947-01-02848-3

Published electronically:
July 11, 2001

MathSciNet review:
1859276

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we provide a complete classification of the representation type for the blocks for the Hecke algebra of type , stated in terms of combinatorical data. The computation of the complexity of Young modules is a key component in the proof of this classification result.

**[DDu]**R. Dipper, J. Du, Trivial and alternating source modules for Hecke algebras of type ,*Proc. London Math. Soc***66**(1993), 479-506. MR**94a:20022****[DJ1]**R. Dipper, G.D. James, Representations of Hecke algebras of general linear groups,*Proc. London Math. Soc.***52**(1986), 20-52. MR**88b:20065****[DJ2]**R. Dipper, G.D. James, Blocks and idempotents of Hecke algebras of general linear groups,*Proc. London Math. Soc.***54**(1987), 57-82. MR**88m:20084****[Don]**S. Donkin,*The**-Schur algebra*, London Mathematical Society Lecture Notes Series**253**(1998), Cambridge University Press. CMP**2000:01****[Dr]**Yu. A. Drozd,*Tame and wild matrix problems, representations and quadratic forms*Institute of Mathematics, Academy of Sciences, Ukrainian SSR, Kiev 1979. A.M.S Transl.**128**(1986), 31-55.**[Erd]**K. Erdmann,*Blocks of tame representation type*, (Lecture Notes in Math.**1428**), Springer-Verlag, New York 1990. MR**91c:20016****[EN]**K. Erdmann, D.K. Nakano, Representation type of -Schur algebras, to appear in Transactions of AMS.**[Jam]**G.D. James, The decomposition matrices for for ,*Proc. London Math. Soc.***60**(1990), 225-265. MR**91c:20024****[JK]**G.D. James, A. Kerber,*The representation theory of the symmetric group,*Encyclopedia of Mathematics,**16**(1981), Cambridge University Press. MR**83k:20003****[JM]**G.D. James, A. Mathas, A -analogue of the Jantzen-Schaper theorem,*Proc. London Math. Soc.***74**(1997), 241-274. MR**97j:20013****[Jo]**T. Jost, Morita equivalence for blocks of Hecke algebras of symmetric groups,*J. Algebra***194**(1997), 201-223. MR**98h:20014****[Mar]**S. Martin,*Schur Algebras and Representation Theory*, Cambridge Univ. Press, 1993. MR**95f:20071****[dlP]**J.A. de la Peña,*Tame algebras: Some fundamental notions*, Bielefeld preprint 095-010.**[Ric]**J. Rickard, The representation type of self-injective algebras,*Bull. London Math. Soc.***22**(1990), 540-546. MR**92f:16015****[Ri]**C.M. Ringel,*Tame Algebras,*in Representation Theory I, (Lecture Notes in Math.**831**), Springer-Verlag (1980), 137-287.**[Sc1]**J. Scopes, Cartan matrices and Morita equivalence for blocks of the symmetric groups,*J. Algebra***142**(1991), 441-455. MR**92h:20023****[Sc2]**J. Scopes, Symmetric group blocks of defect two,*Quart. J. Math. Oxford***46**(1995), 201-234. MR**96g:20016****[U]**K. Uno, On representations of non-semisimple specialized Hecke algebras,*J. Algebra***149**(1992), 287-312. MR**93k:20044**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
16G60,
20C08

Retrieve articles in all journals with MSC (2000): 16G60, 20C08

Additional Information

**Karin Erdmann**

Affiliation:
Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford, OX1 3LB, UK

Email:
erdmann@maths.ox.ac.uk

**Daniel K. Nakano**

Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602

DOI:
https://doi.org/10.1090/S0002-9947-01-02848-3

Received by editor(s):
September 24, 1999

Received by editor(s) in revised form:
August 18, 2000

Published electronically:
July 11, 2001

Additional Notes:
Research of the second author partially supported by NSF grant DMS-9800960

Article copyright:
© Copyright 2001
American Mathematical Society