Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representation type of Hecke algebras of type $A$


Authors: Karin Erdmann and Daniel K. Nakano
Journal: Trans. Amer. Math. Soc. 354 (2002), 275-285
MSC (2000): Primary 16G60, 20C08
DOI: https://doi.org/10.1090/S0002-9947-01-02848-3
Published electronically: July 11, 2001
MathSciNet review: 1859276
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we provide a complete classification of the representation type for the blocks for the Hecke algebra of type $A$, stated in terms of combinatorical data. The computation of the complexity of Young modules is a key component in the proof of this classification result.


References [Enhancements On Off] (What's this?)

  • [DDu] R. Dipper, J. Du, Trivial and alternating source modules for Hecke algebras of type $A$, Proc. London Math. Soc 66(1993), 479-506. MR 94a:20022
  • [DJ1] R. Dipper, G.D. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. 52 (1986), 20-52. MR 88b:20065
  • [DJ2] R. Dipper, G.D. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. 54 (1987), 57-82. MR 88m:20084
  • [Don] S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Notes Series 253 (1998), Cambridge University Press. CMP 2000:01
  • [Dr] Yu. A. Drozd, Tame and wild matrix problems, representations and quadratic forms Institute of Mathematics, Academy of Sciences, Ukrainian SSR, Kiev 1979. A.M.S Transl. 128 (1986), 31-55.
  • [Erd] K. Erdmann, Blocks of tame representation type, (Lecture Notes in Math. 1428), Springer-Verlag, New York 1990. MR 91c:20016
  • [EN] K. Erdmann, D.K. Nakano, Representation type of $q$-Schur algebras, to appear in Transactions of AMS.
  • [Jam] G.D. James, The decomposition matrices for $GL_n(q)$for $n \leq 10$, Proc. London Math. Soc. 60 (1990), 225-265. MR 91c:20024
  • [JK] G.D. James, A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics, 16 (1981), Cambridge University Press. MR 83k:20003
  • [JM] G.D. James, A. Mathas, A $q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. 74 (1997), 241-274. MR 97j:20013
  • [Jo] T. Jost, Morita equivalence for blocks of Hecke algebras of symmetric groups, J. Algebra 194 (1997), 201-223. MR 98h:20014
  • [Mar] S. Martin, Schur Algebras and Representation Theory, Cambridge Univ. Press, 1993. MR 95f:20071
  • [dlP] J.A. de la Peña, Tame algebras: Some fundamental notions, Bielefeld preprint 095-010.
  • [Ric] J. Rickard, The representation type of self-injective algebras, Bull. London Math. Soc. 22 (1990), 540-546. MR 92f:16015
  • [Ri] C.M. Ringel, Tame Algebras, in Representation Theory I, (Lecture Notes in Math. 831), Springer-Verlag (1980), 137-287.
  • [Sc1] J. Scopes, Cartan matrices and Morita equivalence for blocks of the symmetric groups, J. Algebra 142 (1991), 441-455. MR 92h:20023
  • [Sc2] J. Scopes, Symmetric group blocks of defect two, Quart. J. Math. Oxford 46 (1995), 201-234. MR 96g:20016
  • [U] K. Uno, On representations of non-semisimple specialized Hecke algebras, J. Algebra 149 (1992), 287-312. MR 93k:20044

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16G60, 20C08

Retrieve articles in all journals with MSC (2000): 16G60, 20C08


Additional Information

Karin Erdmann
Affiliation: Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford, OX1 3LB, UK
Email: erdmann@maths.ox.ac.uk

Daniel K. Nakano
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602

DOI: https://doi.org/10.1090/S0002-9947-01-02848-3
Received by editor(s): September 24, 1999
Received by editor(s) in revised form: August 18, 2000
Published electronically: July 11, 2001
Additional Notes: Research of the second author partially supported by NSF grant DMS-9800960
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society