The multiplier ideals of a sum of ideals

Author:
Mircea Mustata

Journal:
Trans. Amer. Math. Soc. **354** (2002), 205-217

MSC (2000):
Primary 14B05; Secondary 14F17

Published electronically:
August 29, 2001

MathSciNet review:
1859032

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if , are nonzero sheaves of ideals on a complex smooth variety , then for every we have the following relation between the multiplier ideals of , and :

A similar formula holds for the asymptotic multiplier ideals of the sum of two graded systems of ideals.

We use this result to approximate at a given point arbitrary multiplier ideals by multiplier ideals associated to zero dimensional ideals. This is applied to compare the multiplier ideals associated to a scheme in different embeddings.

**[DS]**Donatella Delfino and Irena Swanson,*Integral closure of ideals in excellent local rings*, J. Algebra**187**(1997), no. 2, 422–445. MR**1430992**, 10.1006/jabr.1996.6802**[DEL]**Jean-Pierre Demailly, Lawrence Ein and Robert Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J.**48**(2000), 137-156. CMP**2001:03****[Ein]**Lawrence Ein,*Multiplier ideals, vanishing theorems and applications*, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 203–219. MR**1492524****[EL]**Lawrence Ein and Robert Lazarsfeld,*A geometric effective Nullstellensatz*, Invent. Math.**137**(1999), no. 2, 427–448. MR**1705839**, 10.1007/s002220050332**[ELS]**Lawrence Ein, Robert Lazarsfeld, and Karen Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math.**144**(2001), 241-252. CMP**2001:11****[Ho]**Jason Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc.**353**(2001), 2665-2671. CMP**2001:11****[Ka1]**Yujiro Kawamata,*Deformations of canonical singularities*, J. Amer. Math. Soc.**12**(1999), no. 1, 85–92. MR**1631527**, 10.1090/S0894-0347-99-00285-4**[Ka2]**Yujiro Kawamata,*On the extension problem of pluricanonical forms*, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 193–207. MR**1718145**, 10.1090/conm/241/03636**[La]**Robert Lazarsfeld, Multiplier ideals for algebraic geometers, lecture notes available at http://www.math.lsa.umich.edu/~rlaz, version of August 2000.**[Mu]**Mircea Mustata, Singularities of pairs via jet schemes, preprint 2001, arXiv: math. AG/0102201.**[Siu]**Yum-Tong Siu,*Invariance of plurigenera*, Invent. Math.**134**(1998), no. 3, 661–673. MR**1660941**, 10.1007/s002220050276

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
14B05,
14F17

Retrieve articles in all journals with MSC (2000): 14B05, 14F17

Additional Information

**Mircea Mustata**

Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720 and Institute of Mathematics of The Romanian Academy, Bucharest, Romania

Email:
mustata@math.berkeley.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-01-02867-7

Keywords:
Multiplier ideals,
log resolutions,
monomial ideals

Received by editor(s):
March 1, 2001

Published electronically:
August 29, 2001

Article copyright:
© Copyright 2001
American Mathematical Society