Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Induced operators on symmetry classes of tensors


Authors: Chi-Kwong Li and Alexandru Zaharia
Journal: Trans. Amer. Math. Soc. 354 (2002), 807-836
MSC (2000): Primary 15A69, 15A60, 15A42, 15A45, 15A04, 47B49
DOI: https://doi.org/10.1090/S0002-9947-01-02785-4
Published electronically: September 19, 2001
MathSciNet review: 1862569
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $V$ be an $n$-dimensional Hilbert space. Suppose $H$ is a subgroup of the symmetric group of degree $m$, and $\chi: H \rightarrow \mathbb C$ is a character of degree 1 on $H$. Consider the symmetrizer on the tensor space $\bigotimes^m V$

\begin{displaymath}S(v_1\otimes \cdots \otimes v_m) = {1\over \vert H\vert}\sum... ... v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(m)} \end{displaymath}

defined by $H$ and $\chi$. The vector space

\begin{displaymath}V_\chi^m(H) = S(\bigotimes^m V) \end{displaymath}

is a subspace of $\bigotimes^m V$, called the symmetry class of tensors over $V$ associated with $H$ and $\chi$. The elements in $V_\chi^m(H)$ of the form $S(v_1\otimes \cdots \otimes v_m)$ are called decomposable tensors and are denoted by $v_1*\cdots * v_m$. For any linear operator $T$ acting on $V$, there is a (unique) induced operator $K(T)$ acting on $V_\chi^m(H)$ satisfying

\begin{displaymath}K(T) v_1* \dots *v_m = Tv_1* \cdots * Tv_m. \end{displaymath}

In this paper, several basic problems on induced operators are studied.


References [Enhancements On Off] (What's this?)

  • 1. P. Andresen and M. Marcus, Weyl's inequality and quadratic forms on the Grassmannian, Pacific J. Math. 67 (1976), 277-289. MR 55:2963
  • 2. B. Aupetit and H. du T. Mouton, Spectrum preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100. MR 95c:46070
  • 3. L. Beasley, Linear transformations on matrices: The invariance of sets of ranks, Linear Algebra Appl. 48 (1982), 25-35. MR 84e:15001
  • 4. N. Bebiano and C.K. Li, A brief survey on the decomposable numerical range of matrices, Linear and Multilinear Algebra 32 (1992), 179-190. MR 94g:15019
  • 5. N. Bebiano, C.K. Li and J. da Providência, The numerical range and decomposable numerical range of matrices, Linear and Multilinear Algebra 29 (1991), 195-205. MR 94g:15016
  • 6. N. Bebiano, C.K. Li and J. da Providência, Some results on the numerical range of a derivation, SIAM J. Matrix Analysis Appl. 14 (1993), 1084-1095. MR 94i:15022
  • 7. N. Bebiano, C.K. Li and J. da Providência, Generalized Numerical Ranges of Permanental Compounds Arising From Quantum Systems of Bosons, Electron J. Linear Algebra 7 (2000), 73-91. CMP 2000:16
  • 8. M. Bresar and P. Semrl, Linear maps preserving the spectral radius, J. Functional Analysis 142 (1996), 360-368. MR 97i:47070
  • 9. C.F. Chan, Some more on a conjecture of Marcus and Wang, Linear and Multilinear Algebra 25 (1989), 231-235. MR 90h:20014
  • 10. J.A. Dias da Silva and A. Fonseca, Nonzero star products, Linear and Multilinear Algebra 27 (1990), 49-55. MR 91h:15030
  • 11. J. Dieudonné, Sur une Generalisation du groupe orthogonal à quatre variables, Arch. Math 1 (1949), 282-287. MR 10:5861
  • 12. D.Z. Dokovic and C.K. Li, Overgroups of some classical linear groups with applications to linear preserver problems. Second Conference of the International Linear Algebra Society (ILAS) (Lisbon, 1992). Linear Algebra Appl. 197/198 (1994), 31-61. MR 95i:20069
  • 13. E.B. Dynkin, The maximal subgroups of the classical groups, Amer. Math. Soc. Transl. Ser. 6 (1957), 245-378.
  • 14. G. Frobenius, Uber die Darstellung der endichen Gruppen durch Linear Substitutionen, S. B. Deutsch. Akad. Wiss. Berlin (1897), 994-1015.
  • 15. R. Grone and M. Marcus, Isometries of matrix algebras, J. Algebra 47 (1977), 180-189. MR 56:3039
  • 16. R.M. Guralnick, Invertible preservers and algebraic groups. II. Preservers of similarity invariants and overgroups of ${PSL}\sb n({\mathbb F})$. Linear and Multilinear Algebra 43 (1997), 221-255. MR 99m:20108
  • 17. R.M. Guralnick and C.K. Li, Invertible preservers and algebraic groups III: Preservers of unitary similarity (congruence) invariants and overgroups of some unitary groups, Linear and Multilinear Algebra 43 (1997), 257-282. MR 99m:20109
  • 18. W. Greub, Multilinear Algebra, 2nd ed., Springer-Verlag, New York, 1978. MR 80c:15017
  • 19. K.R. Gustafson and D.K.M. Rao, Numerical range: The field of values of linear operators and matrices, Universitext, Springer-Verlag, New York, 1997. MR 98b:47008
  • 20. P.R. Halmos, A Hilbert Space Problem Book, Second Ed., Springer-Verlag, New York, 1982. MR 84e:47001
  • 21. J.W. Helton and L. Rodman, Signature preserving linear maps of hermitian matrices, Linear and Multilinear Algebra 17 (1985), 29-37. MR 87m:15055
  • 22. A. Horn, On the eigenvalues of a matrix with prescribed singular values, Proc. Amer. Math. Soc. 5 (1954), 4-7. MR 15:847d
  • 23. R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991; Corrected reprint, Cambridge Univ. Press, 1994. MR 92e:15003; MR 95c:15001
  • 24. V. Istratescu, Introduction to Linear Operator Theory, Marcel Dekker, New York, 1981. MR 83d:47002
  • 25. G. James and M. Liebeck, Representations and Characters of Groups, Cambridge Mathematical Textbooks, Cambridge University Press, 1993. MR 94h:20007
  • 26. A.A. Jafarian and A.R. Sourour, Spectrum preserving linear maps, J. Functional Analysis 66 (1986), 255-261. MR 87m:47011
  • 27. R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. MR 13:2569
  • 28. C.K. Li, The decomposable numerical radius and numerical radius of a compound matrix, Linear Algebra Appl. 76 (1986), 45-58. MR 87g:15037
  • 29. C.K. Li, Linear operators preserving the numerical radius of matrices, Proc. Amer. Math. Soc. 99 (1987), 601-608. MR 87m:15004
  • 30. C.K. Li, Matrices with some extremal properties, Linear Algebra Appl. 101 (1988), 255-267. MR 89c:15025
  • 31. C.K. Li and S. Pierce, Linear operators preserving certain singular matrix sets, Linear and Multilinear Algebra 36 (1993), 19-25. MR 96b:15005
  • 32. C.K. Li, P. Mehta and L. Rodman, Linear operators preserving the inner and outer $c$-spectral radius, Linear and Multilinear Algebra 36 (1994), 195-204. MR 96b:15055
  • 33. C.K. Li and N.K. Tsing, Linear operators preserving the decomposable numerical radius, Linear and Multilinear Algebra 23 (1988), 333-341. MR 90g:15041
  • 34. C.K. Li and N.K. Tsing, Linear operators preserving the unitarily invariant norms on matrices, Linear and Multilinear Algebra 26 (1990), 119-132. MR 91g:15017
  • 35. M. Marcus, All linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959), 155-163. MR 21:54
  • 36. M. Marcus, Finite Dimensional Multilinear Algebra, Part I, Marcel Dekker, New York, 1973. MR 50:4599
  • 37. M. Marcus, Finite Dimensional Multilinear Algebra, Part II, Marcel Dekker, New York, 1975. MR 53:5623
  • 38. M. Marcus and P. Andresen, The numerical radius of exterior powers, Linear Algebra Appl. 16 (1977), 131-151. MR 58:16737
  • 39. M. Marcus and I. Filippenko, On the unitary invariance of the numerical radius, Pac. J. Math. 75 (1978), 383-395. MR 58:10953
  • 40. M. Marcus and I. Filippenko, Linear operators preserving the decomposable numerical range, Linear and Multilinear Algebra 7 (1979), 27-36. MR 80d:15028
  • 41. M. Marcus and B.N. Moyls, Linear transformations on algebras of matrices, Canad. J. Math. 11 (1959), 61-66. MR 20:6432
  • 42. M. Marcus and M. Sandy, Conditions for the generalized numerical range to be real, Linear Algebra Appl. 71 (1985), 219-239. MR 87a:15036
  • 43. M. Marcus and B. Wang, Some variations on the numerical range, Linear and Multilinear Algebra 9 (1980), 111-120. MR 82d:47007
  • 44. F.D. Murnaghan, On the field of values of a square matrix, Proc. Nat. Acad. Sci. USA 18 (1932), 246-248.
  • 45. R. Merris, Multilinear Algebra, Algebra, Logic and Applications, 8. Gordon and Breach Science Publishers, Amsterdam, 1997. MR 98i:15002
  • 46. V.J. Pellegrini, Numerical range preserving operators on a Banach algebra, Studia Math. 54 (1975), 143-147. MR 52:8941
  • 47. S. Pierce et al., A Survey of Linear Preserver Problems, Linear and Multilinear Algebra 33 (1992), 1-130.
  • 48. V.P. Platonov and D.Z. Dokovic, Linear preserver problems and algebraic groups. Math. Ann. 303 (1995), no. 1, 165-184. MR 96m:20072
  • 49. V.P. Platonov and D. Z. Dokovic, Subgroups of $GL(n^2,\mathbb C)$ containing $PSU(n)$, Trans. Amer. Math. Soc. 348 (1996), 141-152. MR 96j:20063
  • 50. H. Robinson, Quadratic forms on symmetry classes of tensors, Linear and Multilinear Algebra 4 (1977), 233-241. MR 57:359
  • 51. H. Schneider, Positive operators and an inertial theorem, Numerische Mathematik 7 (1965), 11-17. MR 30:3888
  • 52. T.Y. Tam, On the generalized $m$th decomposable numerical radius on symmetry classes of tensors, Linear and Multilinear Algebra 19 (1986), 117-132. MR 87i:15019
  • 53. T.Y. Tam, Linear operator on matrices: the invariance of the decomposable numerical range, Linear Algebra Appl. 85 (1987), 1-7. MR 88a:15050
  • 54. T.Y. Tam, Linear operator on matrices: the invariance of the decomposable numerical radius, Linear Algebra Appl. 87 (1987), 147-153. MR 87m:15060
  • 55. T.Y. Tam, Linear operator on matrices: the invariance of the decomposable numerical range. II, Linear Algebra Appl. 92 (1987), 197-202. MR 88j:15026
  • 56. W. Watkins, Linear maps and tensor rank, J. Algebra 38 (1976), 75-84. MR 54:12813
  • 57. H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. USA 35 (1949), 408-411. MR 11:37d
  • 58. A. Wintner, Zür Theorie der beschränkten Bilinearformen, Math. Z. 39 (1929), 228-282.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 15A69, 15A60, 15A42, 15A45, 15A04, 47B49

Retrieve articles in all journals with MSC (2000): 15A69, 15A60, 15A42, 15A45, 15A04, 47B49


Additional Information

Chi-Kwong Li
Affiliation: Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795
Email: ckli@math.wm.edu

Alexandru Zaharia
Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3 and Institute of Mathematics of The Romanian Academy, 70700 Bucharest, Romania
Email: zaharia@math.toronto.edu

DOI: https://doi.org/10.1090/S0002-9947-01-02785-4
Keywords: Symmetry class of tensors, linear operator, induced operator
Received by editor(s): October 6, 1999
Received by editor(s) in revised form: September 11, 2000
Published electronically: September 19, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society