Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Skew Schubert functions and the Pieri formula for flag manifolds

Authors: Nantel Bergeron and Frank Sottile
Journal: Trans. Amer. Math. Soc. 354 (2002), 651-673
MSC (1991): Primary 05E15, 14M15, 05E05, 06A07, 14N10
Published electronically: September 21, 2001
MathSciNet review: 1862562
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show the equivalence of the Pieri formula for flag manifolds with certain identities among the structure constants for the Schubert basis of the polynomial ring. This gives new proofs of both the Pieri formula and of these identities. A key step is the association of a symmetric function to a finite poset with labeled Hasse diagram satisfying a symmetry condition. This gives a unified definition of skew Schur functions, Stanley symmetric functions, and skew Schubert functions (defined here). We also use algebraic geometry to show the coefficient of a monomial in a Schubert polynomial counts certain chains in the Bruhat order, obtainng a combinatorial chain construction of Schubert polynomials.

References [Enhancements On Off] (What's this?)

  • 1. A. D. BERENSHTEN AND A. V. ZELEVINSKI, Involutions on Gel$'$fand-Tsetlin schemes and multiplicities in skew ${\rm {G}{L}}\sb n$-modules, Dokl. Akad. Nauk SSSR, 300 (1988), pp. 1291-1294. MR 89h:22030
  • 2. N. BERGERON, A combinatorial construction of the Schubert polynomials, J. Combin. Theory, Ser. A, 60 (1992), pp. 168-182. MR 93i:05138
  • 3. N. BERGERON AND F. SOTTILE, Schubert polynomials, the Bruhat order, and the geometry of flag manifolds.
    Duke Math. J., 95 (1998), pp. 373-423. MR 2000d:05127
  • 4. -, A monoid for the Grassmannian Bruhat order. Europ. J. Combinatorics, 20 (1999), pp. 197-211. MR 2000f:05091
  • 5. I. N. BERNSTEIN, I. M. GELFAND, AND S. I. GELFAND, Schubert cells and cohomology of the spaces $G/P$, Russian Mathematical Surveys, 28 (1973), pp. 1-26.
  • 6. S. BILLEY, W. JOCKUSCH, AND R. STANLEY, Some combinatorial properties of Schubert polynomials, J. Algebraic Combinatorics, 2 (1993), pp. 345-374. MR 94m:05197
  • 7. C. CHEVALLEY, Sur les décompositions cellulaires des espaces $G/B$, in Algebraic Groups and their Generalizations: Classical Methods, American Mathematical Society, 1994, pp. 1-23.
    Proceedings and Symposia in Pure Mathematics, vol. 56, Part 1. MR 95e:14041
  • 8. M. DEMAZURE, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4), 7 (1974), pp. 53-88. MR 50:7174
  • 9. P. EDELMAN AND C. GREENE, Balanced tableaux, Adv. Math., 63 (1987), pp. 42-99. MR 88b:05012
  • 10. R. EHRENBORG AND M. READDY, Sheffer posets and $r$-signed permutations, Ann. Sci. Math Québec, 19 (1995), pp. 173-196. MR 96m:06005
  • 11. S. FOMIN AND A. N. KIRILLOV, Combinatorial ${B}_n$-analogs of Schubert polynomials, Trans. Amer. Math. Soc., 348 (1996), pp. 3591-3620. MR 98e:05110
  • 12. S. FOMIN AND A. N. KIRILLOV, Yang-Baxter equation, symmetric functions and Schubert polynomials, Discrete Math., 153 (1996), pp. 124-143.
    Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). MR 98b:05101
  • 13. S. FOMIN AND R. STANLEY, Schubert polynomials and the nil-Coxeter algebra, Adv. Math., 103 (1994), pp. 196-207. MR 95f:05115
  • 14. M. HAIMAN, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math., 99 (1992), pp. 79-113. MR 93h:05173
  • 15. A. KIRILLOV AND T. MAENO, Quantum double Schubert polynomials, quantum Schubert polynomials, and the Vafa-Intriligator formula.
    Formal power series and algebraic combinatorics (Vienna, 1997). Discrete Math. 217 (2000), no. 1-3, pp. 191-223. CMP 2000:15
  • 16. D. KNUTH, Permutations, matrices and generalized Young tableaux, Pacific J. Math., 34 (1970), pp. 709-727. MR 42:7535
  • 17. A. KOHNERT, Weintrauben, Polynome, Tableaux, Bayreuth Math. Schrift., 38 (1990), pp. 1-97. MR 93d:05155
  • 18. W. KRÁSKIEWICZ, Reduced decompositions in Weyl groups, Europ. J. Combin., 16 (1995), pp. 293-313. MR 96i:05181
  • 19. W. KRÁSKIEWICZ AND P. PRAGACZ, Foncteurs de Schubert, C. R. Acad. Sci. Paris, 304 (1987), pp. 209-211. MR 89b:14068
  • 20. G. KREWERAS, Sur les partitions non croisées d'un cycle, Discrete Math., 1 (1972), pp. 333-350. MR 46:8852
  • 21. A. LASCOUX AND M.-P. SCHÜTZENBERGER, Le monoïde plaxique, in Non-Commutative Structures in Algebra and Geometric Combinatorics, Quad. ``Ricera Sci.,'' 109 Roma, CNR, 1981, pp. 129-156. MR 83g:20016
  • 22. -, Polynômes de Schubert, C. R. Acad. Sci. Paris, 294 (1982), pp. 447-450. MR 83e:14039
  • 23. -, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris, 295 (1982), pp. 629-633. MR 84b:14030
  • 24. -, Symmetry and flag manifolds, in Invariant Theory, (Montecatini, 1982), vol. 996 of Lecture Notes in Math., Springer-Verlag, 1983, pp. 118-144. MR 85e:14073
  • 25. I. G. MACDONALD, Notes on Schubert Polynomials, Laboratoire de combinatoire et d'informatique mathématique (LACIM), Université du Québec à Montréal, Montréal, 1991.
  • 26. -, Symmetric Functions and Hall Polynomials, Oxford University Press, 1995.
    second edition. MR 96h:05207
  • 27. L. MANIVEL, Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence, Société Mathématique de France, Paris, 1998, 179 pages. MR 99k:05159
  • 28. D. MONK, The geometry of flag manifolds, Proc. London Math. Soc., 9 (1959), pp. 253-286. MR 21:5641
  • 29. A. POSTNIKOV, On a quantum version of Pieri's formula.
    Advances in geometry, Progr. Math., 172, Birkhäuser Boston, Boston, MA (1999) pp. 371-383. MR 99m:14096
  • 30. J. B. REMMEL AND M. SHIMOZONO, A simple proof of the Littlewood-Richardson rule and applications, Discrete Math., 193 (1998), pp. 257-266.
    Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 2000a:05213
  • 31. F. SOTTILE, Pieri's formula for flag manifolds and Schubert polynomials, Annales de l'Institut Fourier, 46 (1996), pp. 89-110. MR 97g:14035
  • 32. R. STANLEY, On the number of reduced decompositions of elements of Coxeter groups, Europ. J. Combin., 5 (1984), pp. 359-372. MR 86i:05011
  • 33. S. VEIGNEAU, Calcul Symbolique et Calcul Distribué en Combinatoire Algebrique, Thèse, l'Université de Marne-la-Valeé, 1996.
  • 34. R. WINKEL, Diagram rules for the generation of Schubert polynomials.
    J. Combin. Theory Ser. A 86 (1999), no. 1, pp 14-48. MR 2001b:05227
  • 35. -, On the multiplication of Schubert polynomials.
    Adv. in Appl. Math. 20 (1998), no. 1, pp 73-97. MR 99c:05200

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 05E15, 14M15, 05E05, 06A07, 14N10

Retrieve articles in all journals with MSC (1991): 05E15, 14M15, 05E05, 06A07, 14N10

Additional Information

Nantel Bergeron
Affiliation: Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P, Canada

Frank Sottile
Affiliation: Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003

Keywords: Pieri formula, Bruhat order, Schubert polynomial, Stanley symmetric function, flag manifold, {\em jeu de taquin}, weak order
Received by editor(s): October 9, 2000
Published electronically: September 21, 2001
Additional Notes: The first author was supported in part by NSERC and CRM grants.
The second author was supported in part by NSERC grant OGP0170279 and NSF grant DMS-9022140.
Dedicated: In memory of Rodica Simion
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society