Tenth order mock theta functions in Ramanujan's lost notebook (IV)

Author:
Youn-Seo Choi

Journal:
Trans. Amer. Math. Soc. **354** (2002), 705-733

MSC (2000):
Primary 11B65; Secondary 11F20, 33E05

Published electronically:
September 21, 2001

MathSciNet review:
1862564

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Ramanujan's lost notebook contains many results on mock theta functions. In particular, the lost notebook contains eight identities for tenth order mock theta functions. Previously the author proved the first six of Ramanujan's tenth order mock theta function identities. It is the purpose of this paper to prove the seventh and eighth identities of Ramanujan's tenth order mock theta function identities which are expressed by mock theta functions and a definite integral. L. J. Mordell's transformation formula for the definite integral plays a key role in the proofs of these identities. Also, the properties of modular forms are used for the proofs of theta function identities.

**[AH]**George E. Andrews and Dean Hickerson,*Ramanujan’s “lost” notebook. VII. The sixth order mock theta functions*, Adv. Math.**89**(1991), no. 1, 60–105. MR**1123099**, 10.1016/0001-8708(91)90083-J**[B1]**Bruce C. Berndt,*Ramanujan’s notebooks. Part III*, Springer-Verlag, New York, 1991. MR**1117903****[B2]**Bruce C. Berndt,*Ramanujan’s notebooks. Part IV*, Springer-Verlag, New York, 1994. MR**1261634****[BR]**Bruce C. Berndt and Robert A. Rankin,*Ramanujan*, History of Mathematics, vol. 9, American Mathematical Society, Providence, RI; London Mathematical Society, London, 1995. Letters and commentary. MR**1353909****[C1]**Youn-Seo Choi,*Tenth order mock theta functions in Ramanujan’s lost notebook*, Invent. Math.**136**(1999), no. 3, 497–569. MR**1695205**, 10.1007/s002220050318**[C2]**Y.-S. Choi,*Tenth order mock theta functions in Ramanujan's Lost Notebook (II)*, Adv. Math.**156**(2000), 180-285. CMP**2001:07****[C3]**Y.-S. Choi,*Two identities for tenth order mock theta functions in Ramanujan's Lost Notebook*, submitted for publication.**[GR]**George Gasper and Mizan Rahman,*Basic hypergeometric series*, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR**1052153****[H1]**Dean Hickerson,*A proof of the mock theta conjectures*, Invent. Math.**94**(1988), no. 3, 639–660. MR**969247**, 10.1007/BF01394279**[H2]**Dean Hickerson,*On the seventh order mock theta functions*, Invent. Math.**94**(1988), no. 3, 661–677. MR**969248**, 10.1007/BF01394280**[KM]**Marvin I. Knopp,*Modular functions in analytic number theory*, Markham Publishing Co., Chicago, Ill., 1970. MR**0265287****[ML]**L. J. Mordell,*The value of the definite integral*, Quarterly Journal of Mathematics**48**(1920), 329-342.**[RA]**Srinivasa Ramanujan,*The lost notebook and other unpublished papers*, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR**947735****[RR]**Robert A. Rankin,*Modular forms and functions*, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR**0498390****[RS]**Sinai Robins,*Generalized Dedekind 𝜂-products*, The Rademacher legacy to mathematics (University Park, PA, 1992) Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 119–128. MR**1284055**, 10.1090/conm/166/01645**[WG]**G. N. Watson,*The final problem:An account of the mock theta functions*, J. London Math. Soc.**11**(1936), 55-80.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
11B65,
11F20,
33E05

Retrieve articles in all journals with MSC (2000): 11B65, 11F20, 33E05

Additional Information

**Youn-Seo Choi**

Affiliation:
Department of Mathematics, Korea University, 5-1, Anam-dong, Sungbuk-ku, Seoul, 136-701, Korea

Email:
y-choi2@mail.korea.ac.kr

DOI:
https://doi.org/10.1090/S0002-9947-01-02861-6

Keywords:
Ramanujan,
definite integral,
theta function,
mock theta function

Received by editor(s):
August 11, 2000

Published electronically:
September 21, 2001

Article copyright:
© Copyright 2001
American Mathematical Society