New bases for Triebel-Lizorkin and Besov spaces

Authors:
G. Kyriazis and P. Petrushev

Journal:
Trans. Amer. Math. Soc. **354** (2002), 749-776

MSC (1991):
Primary 41A17, 41A20, 42B25, 42C15

DOI:
https://doi.org/10.1090/S0002-9947-01-02916-6

Published electronically:
October 3, 2001

MathSciNet review:
1862566

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new method for construction of unconditional bases for general classes of Triebel-Lizorkin and Besov spaces. These include the , , potential, and Sobolev spaces. The main feature of our method is that the character of the basis functions can be prescribed in a very general way. In particular, if is any sufficiently smooth and rapidly decaying function, then our method constructs a basis whose elements are linear combinations of a fixed (small) number of shifts and dilates of the single function . Typical examples of such 's are the rational function and the Gaussian function This paper also shows how the new bases can be utilized in nonlinear approximation.

**[BR]**C. de Boor, A. Ron, Fourier analysis of the approximation power of principal shift invariant spaces*Constr. Approx.*,**8**(1992), 427-462. MR**94c:41023****[Da]**I. Daubechies*Ten Lectures on Wavelets*, SIAM, Philadelphia, 1992. MR**93e:42045****[De]**R. DeVore, Nonlinear approximation*Acta Numer.*(1998), 51-150. MR**2001a:41034****[DJKP]**D. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage asymptotia*J. Royal Stat. Soc.**Ser. B.*57 (1996), 301-369. MR**96g:62068****[DL]**R. DeVore and G. G. Lorentz,*Constructive Approximation*, Springer, New York, 1993. MR**95f:41001****[Do]**D. Donoho, Unconditional bases are optimal bases for data compression and for statistical estimation*Appl. Comp. Harm. Anal.*,**1**(1993), 100-115. MR**94j:94011****[FJ1]**M. Frazier, B. Jawerth, Decomposition of Besov Spaces*Indiana Univ. Math. J.*,**34**(1985), 777-799. MR**87h:46083****[FJ2]**M. Frazier, B. Jawerth, A discrete transform and decompositions of distribution,*J. of Functional Analysis***93**(1990), 34-170. MR**92a:46042****[FJW]**M. Frazier, B. Jawerth, and G. Weiss,*Littlewood-Paley Theory and the Study of Function Spaces*,**CBMS 79**(1991), AMS. MR**92m:42021****[FS]**C. Fefferman and E. Stein, Some maximal inequalities,*Amer. J. Math.***93**(1971), 107-115. MR**44:2026****[JM]**R.-Q. Jia, C. Micchelli, Using the refinement equations for the construction of pre-wavelets II: powers of two,*Curves and Surfaces*, Academic Press, 1991. MR**93e:65024****[K1]**G. Kyriazis, Wavelet coefficients measuring smoothness in ,*Appl. Comp. Harm. Anal.***3**(1996), 100-119. MR**97h:42016****[K2]**G. Kyriazis, Approximation of Distribution Spaces by Means of Kernel Operators*J. Four. Anal. Appl.***2**(1996), 261-286. MR**97d:46041****[K3]**G. Kyriazis, Unconditional bases of function spaces,*preprint*.**[M]**Y. Meyer,*Ondelettes et Opérateurs I: Ondelettes*, Hermann Éditeurs, 1990. MR**93i:42002****[Pee]**J. Peetre,*New thought on Besov spaces*, Duke Univ. Math. Series. Durham, N.C., 1993. MR**57:1108****[Pek]**A. Pekarskii, Chebyshev rational approximation in a disk, on a circle, and on a segment,*Mat. Sb.*,**133 (175)**(1987), 86-102, (English translation in*Math. USSR Sbornik*,**61**(1988), 87-102). MR**89e:30060****[Pet]**P. Petrushev, Bases consisting of rational functions of uniformly bounded degrees or more general functions*J. Funct. Anal.*,**174**(2000), 18-75. CMP**2000:13****[PP]**P. Petrushev, V. Popov,*Rational approximation of real functions*, Cambridge University Press, Cambridge, 1987. MR**89i:41022****[T]**H. Triebel,*Theory of Function Spaces*, Birkhäuser, 1983. MR**86j:46026**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
41A17,
41A20,
42B25,
42C15

Retrieve articles in all journals with MSC (1991): 41A17, 41A20, 42B25, 42C15

Additional Information

**G. Kyriazis**

Affiliation:
Department of Mathematics and Statistics, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus

Email:
kyriazis@ucy.ac.cy

**P. Petrushev**

Affiliation:
Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208

Email:
pencho@math.sc.edu

DOI:
https://doi.org/10.1090/S0002-9947-01-02916-6

Keywords:
Triebel-Lizorkin spaces,
Besov spaces,
unconditional bases,
nonlinear approximation,
wavelets

Received by editor(s):
June 24, 1999

Published electronically:
October 3, 2001

Additional Notes:
This research was supported by ARO Research Contract DAAG55-98-1-0002.

Article copyright:
© Copyright 2001
American Mathematical Society