Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some combinatorics of binomial coefficients and the Bloch-Gieseker property for some homogeneous bundles


Author: Mei-Chu Chang
Journal: Trans. Amer. Math. Soc. 354 (2002), 975-992
MSC (2000): Primary 14F05; Secondary 14J60, 05A10
DOI: https://doi.org/10.1090/S0002-9947-01-02837-9
Published electronically: September 19, 2001
MathSciNet review: 1867368
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A vector bundle has the Bloch-Gieseker property if all its Chern classes are numerically positive. In this paper we show that the non-ample bundle $\Omega ^{p}_{\mathbb{P}_{n}}(p+1)$ has the Bloch-Gieseker property, except for two cases, in which the top Chern classes are trivial and the other Chern classes are positive. Our method is to reduce the problem to showing, e.g. the positivity of the coefficient of $t^{k}$ in the rational function $\frac{(1+t)^{\binom n p} (1+3t)^{\binom {n}{p-2}} \cdots (1+(p-1)t)^{\binom n2}... ...1+2t)^{\binom {n}{p-1}} (1+4t)^{\binom {n}{p-3}} \cdots (1+pt)^{\binom {n}{1}}}$ (for $p$ even).


References [Enhancements On Off] (What's this?)

  • [BH] Barth, W., Hulek, K., Monads and moduli of vector bundles, Manuscripta Math. 25 (1978), 323-347. MR 80f:14005
  • [BG] Bloch, S., Gieseker, D., The positivity of the Chern classes of an ample vector bundle, Inv. Math 12 (1971), 112-117. MR 45:6825
  • [C] Chang, M-C, Some remarks on Buchsbaum bundles, J. Pure Appl. Algebra 152 (2000), 1-3. MR 2001f:14082
  • [E1] Ein, L., Generalized null correlation bundles, Nagoya Math. J. 111 (1988), 13-24. MR 89k:14024
  • [E2] Ein, L., Private communication.
  • [EHS] Elencwajg, G., Hirschowitz, A., Schneider, M., Les fibres uniformes de rang au plus $n$ sur $\mathbb{P}_{n}(\mathbb{C})$ sont ceux qu'on croit, Proceedings of the Nice conference on vector bundles and differential equations, (1979). Birkhäuser, Boston, 1980. MR 81k:14015
  • [FL] Fulton, W., Lazarsfeld, R., Positive polynomials for ample vector bundles, Annals of Math. 118, (1983), 35-60. MR 85e:14021
  • [H1] Hartshorne, R., Algebraic geometry, GTM 152, Springer-Verlag, Heidelberg and New York, (1977). MR 57:3116
  • [H2] Hartshorne, R., Algebraic vector bundles on projective spaces: A problem list, Topology 18, (1979), 117-128. MR 81m:14010
  • [H3] Hartshorne, R., Varieties of small codimension in projective spaces, Bull. A.M.S. 80, (1974), 1017-1032. MR 52:5688
  • [Ho] Horrocks, G., Examples of rank three vector bundles on five-dimensional projective space, J. London Math. Soc. (2) 18 (1978), 12-27. MR 80d:14011
  • [HM] Horrocks, G., Mumford, D., A rank 2 vector bundle on $\mathbb{P}^{4}$ with 15,000 symmetries, Topology 12, (1973), 63-81. MR 52:3164
  • [KPR] Kumar, M., Peterson, C., Rao, P., Construction of low rank vector bundles on $\mathbb P^4$ and $\mathbb P^5$ (preprint).
  • [KS] Katz, S., Stromme, S., A Maple package for intersection theory.
  • [LV] Lazarsfeld, R., Van de Ven, A., Topics in the Geometry of Projective Spaces, DMV Sem. 4, Birkhäuser Verlag, Basel and Boston, (1984). MR 87e:14045
  • [OSS] Okonek, C., Schneider, M., Spindler, H., Vector bundles on Complex Projective Spaces, Progress in Mathematics, 3 Birkhäuser, Boston, VIII (1980). MR 81b:14001
  • [T] Tango, H., An example of indecomposable vector bundles of rank $n-1$ on $\mathbb{P}_{n}$, J. Math. Kyoto Univ. 16 (1976), 137-141. MR 53:5593
  • [V] Vogelaar, J.A., Constructing vector bundles from codimension - two subvarieties, Thesis, Leiden 1978.
  • [Z] Zak, F., Tangents and secants of algebraic varieties, AMS Transl. Math. Monos., 127 (1993). MR 94i:14053

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14F05, 14J60, 05A10

Retrieve articles in all journals with MSC (2000): 14F05, 14J60, 05A10


Additional Information

Mei-Chu Chang
Affiliation: Department of Mathematics, University of California, Riverside, California 92521
Email: mcc@math.ucr.edu

DOI: https://doi.org/10.1090/S0002-9947-01-02837-9
Received by editor(s): September 10, 2000
Published electronically: September 19, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society